Skip to main content
Log in

Telomerase activity and hepatic functions of rat embryonic liver progenitor cell in nanoscaffold-coated model bioreactor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Presently, there is growing interest on telomerase activity in all cells (somatic cells, stem cells, cancerous cells and others) since this activity is associated with cellular changes such as proliferation, differentiation, immortalization, cell injury and ageing. Telomerase activity is absent in most of the somatic cells but present in over 90% of cancerous cells and other immortalized cell lines. In our present study, we cultured a rat embryonal liver progenitor cell line RLC-18 in a self-assembly nanostructured scaffold-coated bioreactor (NCB), collagen-coated plates (CCP) and uncoated plates (UP), and evaluated changes of telomerase activity by non radioactive techniques (Telo TAGGG Telomerase PCR ELISA, cell proliferation based on mitochondria number by MTT assay and hepatic functions such as albumin secretion, urea metabolism, Cytochrome P450 activity like ethoxyresorufin-O-deethylase (EROD) activity. We found less telomerase activity and less cell proliferation, but more hepatic functions on the NCB than on the CCP and UP. Our data support the concept that cell-scaffold interaction may play a significant in controlling the telomerase activity as well as enhanced hepatic functions. Although our present study does not focus on the exact mechanism of telomerase regulation, our result may provide basic clues on cell differentiation whereby telomerase activity inhibits differentiation of cells as in the rat embryonic liver cell line, may be regulated by cell–scaffold interaction and where there is less proliferation, cells perform enhanced hepatic functions, thereby implying that bioartificial liver support may be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Takaoka T, Yasumoto S, Katsuta H (1975) A simple method for the cultivation of rat liver cells. Jpn J Exp Med 45:317–326

    CAS  PubMed  Google Scholar 

  2. Machaj EK, Grabowska I, Gajkowska A, Jastrzewska M, Oldak T et al (2005) Differentiation potential of the fetal rat liver-derived cells. Folia Histochem Cytobiol 43:217–222

    PubMed  Google Scholar 

  3. Greenberg RA, Allsopp RC, Chin L, Morin GB, DePinho RA (1998) Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16:1723–1730

    Article  CAS  PubMed  Google Scholar 

  4. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  5. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumor cells with defined genetic elements. Nature 400:464–468

    Article  CAS  PubMed  Google Scholar 

  6. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD et al (1995) Specific association of human telomerase activity with immortal cells and cancer. Science 268:1115–1117

    Article  Google Scholar 

  7. Rhyu S (1995) Telomeres, telomerase, and immortality. J Natl Cancer Inst 87:884–894

    Article  CAS  PubMed  Google Scholar 

  8. Sharma HW, Sokoloski JA, Perez JR, Maltese JY, Sartorelli AC et al (1995) Differentiation of immortal cells inhibits telomerase activity. Proc Natl Acad Sci USA 92:12343–12346

    Article  CAS  PubMed  Google Scholar 

  9. Kaito K, Narita Y, Terada S (2007) Hepatic cell lines cultured on different scaffolds and in different stages for bioartificial liver systems. In: Smith R (ed) Cell technology for cell products, Chap III. Springer, Netherlands, pp 233–238

  10. Fu W, Begley JG, Killen MW, Mattson MP (1999) Antiapoptotic role of telomerase in pheochromocytoma cells. J Biol Chem 274:7264–7271

    Article  CAS  PubMed  Google Scholar 

  11. Kondo S, Tanaka Y, Kondo Y, Hitomi M, Barnett GH et al (1998) Antisense telomerase treatment: induction of two distinct pathways, apoptosis and differentiation. FASEB J 12:801–811

    CAS  PubMed  Google Scholar 

  12. Kanai H, Marushima H, Kimura N, Iwaki T, Saito M et al (2006) Extracorporeal bioartificial liver using the radial-flow bioreactor in treatment of fatal experimental hepatic encephalopathy. Artif Organs 31:148–151

    Article  Google Scholar 

  13. De Bartolo L, Bader A (2001) Review of a flat membrane bioreactor as a bioartificial liver. Ann Transplant 6:40–46

    PubMed  Google Scholar 

  14. Gerlach J, Schnoy N, Smith MD, Neuhaus P (1994) Hepatocyte culture between woven capillary networks: a microscopy study. Artif Organs 18:226–230

    Article  CAS  PubMed  Google Scholar 

  15. Flendrig LM, Sommeijer D, Ladiges NC, Te Veldee AA, Maas MA et al (1998) Commercially available media for flushing extracorporeal bioartificial liver systems prior to connection to the patient’s circulation: an in vitro comparative study in two and three dimensional porcine hepatocyte cultures. Int J Artif Organs 21:467–472

    CAS  PubMed  Google Scholar 

  16. McKane BW, Ramachandran S, Yang J, Xu XC, Mohanakumar T (2003) Xenoreactive anti-Galalpha(1, 3)Gal antibodies prevent porcine endogenous retrovirus infection of human in vivo. Hum Immunol 64:708–717

    Article  CAS  PubMed  Google Scholar 

  17. Rozga J, Podesta L, LePage E, Hoffman A, Morsiani E et al (1993) Control of cerebral oedema by total hepatectomy and extracorporeal liver support in fulminant hepatic failure. Lancet 342:898–899

    Article  CAS  PubMed  Google Scholar 

  18. Sussman NL, Chong MG, Koussayer T, He DE, Shang TA et al (1992) Reversal of fulminant hepatic failure using an extracorporeal liver assist device. Hepatology 16:60–65

    Article  CAS  PubMed  Google Scholar 

  19. Bader A, Frühauf NR (1999) Engineering of hepatic tissue in a mini-bioreactor utilisation of the international space station. In: Wilson A, Proceedings of 2nd European symposium, ESTEC, Noordwijk, The Netherlands, ESA-SP vol 433. European Space Agency (ESA), Paris, ISBN: 9290927321, pp 499–503

  20. Jasmund I, Bader A (2002) Bioreactor developments for tissue engineering applications by the example of the bioartificial liver. Adv Biochem Eng Biotechnol 74:100–108

    Google Scholar 

  21. Bader A, Knop E, Böker K, Frühauf N, Schüttler W et al (1995) A novel bioreactor design for in vitro reconstruction of in vivo liver characteristics. Artif Organs 19:368–374

    Article  CAS  PubMed  Google Scholar 

  22. Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 90:3334–3348

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable beta-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34:663–672

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Holmes T, DiPersio M, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–1393

    Article  PubMed  Google Scholar 

  25. Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S et al (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. PNAS 103:5054–5059

    Article  CAS  PubMed  Google Scholar 

  26. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S (2000) Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffold. PNAS 97:6728–6733

    Article  CAS  PubMed  Google Scholar 

  27. Semino CE, Kasahara J, Hayashi Y, Zhang S (2004) Entrapment of hippocampal neuralcells in self-assembling peptide scaffold. Tissue Eng 10:643–655

    Article  CAS  PubMed  Google Scholar 

  28. Thonhoff JR, Lou DI, Jordan PM, Zhao X, Wu (2008) Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187:42–51

    Article  CAS  PubMed  Google Scholar 

  29. Kisiday J, Jin M, Kurz B, Hung H, Semino CE et al (2002) Selfassembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci USA 99:9996–10001

    Article  CAS  PubMed  Google Scholar 

  30. Kisiday JD, Kurz B, DiMicco MA, Grodzinsky AJ (2005) Evaluation of medium supplemented with insulin-transferrin-selenium for culture of primary bovine calf chondrocytes in three-dimensional hydrogel scaffolds. Tissue Eng 11:141–145

    Article  CAS  PubMed  Google Scholar 

  31. Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ (2004) Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech 37:595–604

    Article  PubMed  Google Scholar 

  32. Semino CE, Merok JR, Crane G, Panagiotakos G, Zhang S (2003) Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71:262–270

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML (2008) Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Eng A 14:227–236

    Article  CAS  Google Scholar 

  34. Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D et al (2005) Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111:442–450

    Article  CAS  PubMed  Google Scholar 

  35. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT (2004) Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110:962–968

    Article  PubMed  Google Scholar 

  36. Genové E, Shen C, Zhang S, Semino CE (2005) The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351

    Article  PubMed  Google Scholar 

  37. Sieminski AL, Semino CE, Gong H, Kamm RD (2008) Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. J Biomed Mater Res 87:494–504

    Article  CAS  Google Scholar 

  38. Misawa H, Kobayashi N, Soto-Gutierrez A, Chen Y, Yoshida A et al (2006) PuraMatrix facilitates bone regeneration in bone defects of calvaria in mice. Cell Transplant 15:903–910

    Article  PubMed  Google Scholar 

  39. Schneider A, Garlick JA, Egles C (2008) Self-assembling Peptide nanofiber scaffolds accelerate wound healing. PLoS ONE 3:1410

    Article  Google Scholar 

  40. Chau Y, Luo Y, Cheung AC, Nagai Y, Zhang S et al (2008) Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides—a model for biofunctional scaffolds. Biomaterials 29:1713–1719

    Article  PubMed  Google Scholar 

  41. Hamada K, Hirose M, Yamashita T, Ohgushi H (2008) Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold. J Biomed Mater Res A 84:128–136

    PubMed  Google Scholar 

  42. Yoshida D, Teramoto A (2007) The use of 3-D culture in peptide hydrogel for analysis of discoidin domain receptor 1-collagen interaction. Cell Adh Migr 1:92–98

    PubMed  Google Scholar 

  43. Elsdale T, Bard J (1972) Collagen substrata for studies on cell behavior. J Cell Biol 54:626–637

    Article  CAS  PubMed  Google Scholar 

  44. Bader A, Frühauf N, Zech K, Haverich A, Borlak J (1998) Development of a small scale bioreactor for drug metabolism studies maintaining hepatospecific functions. Xenbiotica 28:815–825

    Article  CAS  Google Scholar 

  45. Schmitmeier S, Langsch A, Jasmund I, Bader A (2006) Development and characterization of a small-scale bioreactor based on a bioartificial hepatic culture model for predictive pharmacological in vitro screenings. Biotechnol Bioeng 95:1198–1206

    Article  CAS  PubMed  Google Scholar 

  46. Balis UJ, Behnia K, Dwarakanath B, Bhatia SN, Sullivan SJ et al (1999) Oxygen consumption characteristics of porcine hepatocytes. Metab Eng 1:49–62

    Article  CAS  PubMed  Google Scholar 

  47. Schafer DF, Sorrell MF (1997) Power faliure, liver faliure. New Engl J Med 336:1173–1174

    Article  CAS  PubMed  Google Scholar 

  48. Bader A, Frühauf N, Tiedge M, Drinkgern M, Zech K et al (1999) Enhanced oxygen delivery reverses anaerobic metabolic states in prolonged sandwich rat hepatocyte culture. Exp Cell Res 246:221–232

    Article  CAS  PubMed  Google Scholar 

  49. Bader A, Rinkes IHB, Closs IE, Ryan CM, Toner M et al (1992) A stable long-term hepatocyte culture system for studies of physiologic processes: cytokine stimulation of the acute phase response in rat and human hepatocytes. Biotechnol Prog 8:219–225

    Article  CAS  PubMed  Google Scholar 

  50. Langsch A, Bader A (2001) Longterm stability of phase I and phase II enzymes of porcine liver cells in flat membrane bioreactors. Biotechnol Bioeng 76:115–125

    Article  CAS  PubMed  Google Scholar 

  51. Brezden CB, Rauth AM (1996) Differential cell death in immortalized and non-immortalized cells at confluency. Oncogene 12:201–206

    CAS  PubMed  Google Scholar 

  52. Grasl-Kraupp B, Ruttkay-Nedecky B, Müllauer L, Taper H, Huber W, Bursch W et al (1997) Inherent increase of apoptosis in liver tumors: implications for carcinogenesis and tumor regression. Hepatology 25:906–912

    Article  CAS  PubMed  Google Scholar 

  53. Hiyama E, Hiyama K, Yokoyama T, Matsuura Y, Piatyszek MA, Shay JW (1995) Correlating telomerase activity levels with human neuroblastoma outcomes. Nat Med 1:249–255

    Article  CAS  PubMed  Google Scholar 

  54. Tahara H, Nakanishi T, Kitamoto M, Nakashio R, Shay JW et al (1995) Telomerase activity in human liver tissues: comparison between chronic liver disease and hepatocellular carcinomas. Cancer Res 55:2734–2736

    CAS  PubMed  Google Scholar 

  55. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14:4240–4248

    CAS  PubMed  Google Scholar 

  56. Kondo Y, Koga S, Komata T, Kondo S (2000) Treatment of prostate cancer in vitro and in vivo with 25-A anti-telomerase RNA component. Oncogene 19:2205–2211

    Article  CAS  PubMed  Google Scholar 

  57. Ellis AJ, Hughes RD, Wendon JA, Dunne J, Langley PG et al (1996) Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology 24:1446–1451

    Article  CAS  PubMed  Google Scholar 

  58. Watanabe FD, Mullon CJP, Hewitt WR, Arkadopoulos N, Kahaku E et al (1997) Clinical experience with a bioartificial liver in the treatment of severe liver failure. Ann Surg 225:484–494

    Article  CAS  PubMed  Google Scholar 

  59. Nyberg SL, Remmel RP, Mann HJ, Peshwa MV, Hu WS, Cerra FB (1994) Primary hepatocytes outperform Hep G2 cells as the source of biotransformation functions in a bioartificial liver. Ann Surg 220:59–67

    CAS  PubMed  Google Scholar 

  60. Thorgeirsson SS, Grisham JW (2003) Overview of recent experimental studies on liver stem cells. Semin Liver Dis 23:303–312

    Article  CAS  PubMed  Google Scholar 

  61. Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA (2001) Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol 159:1323–1334

    CAS  PubMed  Google Scholar 

  62. Holmes TC (2002) Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotech 20:16–21

    Article  CAS  Google Scholar 

  63. Oren R, Breitman Y, Gur E, Traister A, Zvibel I et al (2005) Whole fetal liver transplantation—a new approach to cell therapy. Liver Transpl 11:929–933

    Article  PubMed  Google Scholar 

  64. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  CAS  PubMed  Google Scholar 

  65. Zhang S, Zhao X, Spirio L (2005) PuraMatrix: self-assembling peptide nanofiber scaffolds. In: Ma PX, Elisseeff J (eds) Scaffolding in tissue engineering. CRC Press, Boca Raton, FL, pp 217–238

  66. Park YN, Chae KJ, Kim YB, Park C, Theise N (2001) Apotosis and proliferation in hepatocarcinogenesis related to cirrhosis. Cancer 92:2733–27738

    Article  CAS  PubMed  Google Scholar 

  67. De Bartolo L, Jarosch-Von Schweder G, Haverich A, Bader A (2000) A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes: cell viability and tissue-specific functions. Biotechnol Prog 16:102–108

    Article  PubMed  Google Scholar 

  68. Frühauf NR, Oldhafer KJ, Höltje M, Kaiser GM, Frühauf JH, Stavrou GA, Bader A, Broelsch CE (2004) A bioartificial liver support system using primary hepatocytes: a preclinical study in a new porcine hepatectomy model. Surgery 136:47–56

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Angela Henning for technical assistance. This work was supported by LIVEBIOMAT (EU project NMP-013653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustinus Bader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giri, S., Nieber, K., Acikgöz, A. et al. Telomerase activity and hepatic functions of rat embryonic liver progenitor cell in nanoscaffold-coated model bioreactor. Mol Cell Biochem 336, 137–149 (2010). https://doi.org/10.1007/s11010-009-0266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0266-3

Keywords

Navigation