Skip to main content

Advertisement

Log in

Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-κB and AP-1 via ERK signaling pathway in A549 human lung cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study first investigates the anti-metastatic effect of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMPs and u-PA expressions in human lung cancer cells, A549. First, the result demonstrated plumbagin could inhibit TPA induced the abilities of the adhesion, invasion, and migration by cell–matrix adhesion assay and Boyden chamber assay. Data also showed plumbagin could inhibit the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) involved in the down-regulating enzyme activities, protein and messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and urokinase-type plasminogen activator (u-PA) induced by TPA. Next, plumbagin also strongly inhibited TPA-induced phosphorylation and degradation of inhibitor of kappaBα (IκBα), and the nuclear levels of nuclear factor kappa B (NF-κB), c-Fos, and c-Jun. Also, a dose-dependent inhibition on the binding abilities of NF-κB and activator protein-1 (AP-1) by plumbagin treatment was further observed. Further, the treatment of specific inhibitor for ERK (U0126) to A549 cells could inhibit TPA-induced MMP-2 and u-PA expressions along with an inhibition on cell invasion and migration. Presented data reveals that plumbagin is a novel, effective, anti-metastatic agent that functions by down-regulating MMP-2 and u-PA gene expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TPA:

12-O-tetradecanoylphorbol-13-acetate

MMPs:

Matrix metalloproteinases

u-PA:

Urokinase-type plasminogen activator

ECM:

Extracellular matrix

ERK:

Extracellular signaling-regulating kinase

JNK/SAPK:

c-Jun N-terminal kinase/stress-activated protein kinase

p38 MAPK:

p38 Mitogen-activated protein kinase

PI3K/Akt:

Phosphoinositide 3-kinase/protein kinase B

NF-κB:

Nuclear factor kappa B

AP-1:

Activator protein-1

IκB:

Inhibitor of NF-κB

IκK:

IκB kinase

References

  1. Mossa JS, El-Feraly FS, Muhammad I (2004) Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide. Phytother Res 18:934–937

    Article  CAS  PubMed  Google Scholar 

  2. Srinivas P, Gopinath G, Banerji A, Dinakar A, Srinivas G (2004) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40:201–211

    Article  CAS  PubMed  Google Scholar 

  3. Ding Y, Chen ZJ, Liu S, Che D, Vetter M, Chang CH (2005) Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone. J Pharm Pharmacol 57:111–116

    Article  CAS  PubMed  Google Scholar 

  4. Hsieh YJ, Lin LC, Tsai TH (2005) Determination and identification of plumbagin from the roots of Plumbago zeylanica L. by liquid chromatography with tandem mass spectrometry. J Chromatogr A 1083:141–145

    Article  CAS  PubMed  Google Scholar 

  5. Chan-Bacab MJ, Pena-Rodriguez LM (2001) Plant natural products with leishmanicidal activity. Nat Prod Rep 18:674–688

    Article  CAS  PubMed  Google Scholar 

  6. Krishnaswamy M, Purushothaman KK (1980) Plumbagin: a study of its anticancer, antibacterial & antifungal properties. Indian J Exp Biol 18:876–877

    CAS  PubMed  Google Scholar 

  7. Sharma I, Gusain D, Dixit VP (1991) Hypolipidaemic and antiatherosclerotic effects of plumbagin in rabbits. Indian J Physiol Pharmacol 35:10–14

    CAS  PubMed  Google Scholar 

  8. Acharya BR, Bhattacharyya B, Chakrabarti G (2008) The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding. Biochemistry 47:7838–7845

    Article  CAS  PubMed  Google Scholar 

  9. Powolny AA, Singh SV (2008) Plumbagin-induced apoptosis in human prostate cancer cells is associated with modulation of cellular redox status and generation of reactive oxygen species. Pharm Res 25:2171–2180

    Article  CAS  PubMed  Google Scholar 

  10. Shih YW, Lee YC, Wu PF, Lee YB, Chiang T-A (2009) Plumbagin inhibits invasion and migration of liver cancer HepG2 cells by decreasing productions of matrix metalloproteinase-2 and urokinase-plasminogen activator. Hepatol Res. Accepted 12 May 2009

  11. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics. CA Cancer J Clin 51:15–36

    Article  CAS  PubMed  Google Scholar 

  12. Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF (2003) Apoptosis and lung cancer: a review. J Cell Biochem 88:885–898

    Article  CAS  PubMed  Google Scholar 

  13. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ (2005) Cancer statistics, 2005. CA Cancer J Clin 55:10–30

    Article  PubMed  Google Scholar 

  14. Huang Q, Shen HM, Ong CN (2004) Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol 68:361–371

    Article  CAS  PubMed  Google Scholar 

  15. Huang SC, Ho CT, Lin-Shiau SY, Lin JK (2005) Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Biochem Pharmacol 69:221–232

    Article  CAS  PubMed  Google Scholar 

  16. Bernhard EJ, Gruber SB, Muschel RJ (1994) Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci USA 91:4293–4297

    Article  CAS  PubMed  Google Scholar 

  17. Duffy MJ, Duggan C (2004) The urokinase plasminogen activator system: a rich source of tumour markers for the individualized management of patients with cancer. Clin Biochem 37:541–548

    Article  CAS  PubMed  Google Scholar 

  18. Itoh Y, Nagase H (2002) Matrix metalloproteinases in cancer. Essays Biochem 38:21–36

    CAS  PubMed  Google Scholar 

  19. Jang BC, Park YK, Choi IH, Kim SP, Hwang JB, Baek WK, Suh MH, Mun KC, Suh SI (2007) 12-O-tetradecanoyl phorbol 13-acetate induces the expression of B7-DC, -H1, -H2, and -H3 in K562 cells. Int J Oncol 31:1439–1447

    CAS  PubMed  Google Scholar 

  20. Ibañez-Tallon I, Caretti G, Blasi F, Crippa MP (1999) In vivo analysis of the state of the human u-PA enhancer following stimulation by TPA. Oncogene 18:2836–2845

    Article  PubMed  Google Scholar 

  21. Carpenter CL, Cantley LC (1996) Phosphoinositide kinases. Curr Opin Cell Biol 8:153–158

    Article  CAS  PubMed  Google Scholar 

  22. Chung TW, Lee YC, Kim CH (2004) Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J 18:1123–1125

    Article  CAS  PubMed  Google Scholar 

  23. Chen PN, Hsieh YS, Chiou HL, Chu SC (2005) Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chem Biol Interact 156:141–150

    Article  CAS  PubMed  Google Scholar 

  24. Kwon GT, Cho HJ, Chung WY, Park KK, Moon A, Park JH (2008) Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. J Nutr Biochem Sep 26 (In print)

  25. Lee SJ, Park SS, Lee US, Kim WJ, Moon SK (2008) Signaling pathway for TNF-alpha-induced MMP-9 expression: Mediation through p38 MAP kinase, and inhibition by anti-cancer molecule magnolol in human urinary bladder cancer 5637 cells. Int Immunopharmacol 8:1821–1826

    Article  CAS  PubMed  Google Scholar 

  26. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  27. Sliva D (2004) Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 4:327–336

    Article  CAS  PubMed  Google Scholar 

  28. Westermarck J, Kahari VM (1999) Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 13:781–792

    CAS  PubMed  Google Scholar 

  29. Aguirre Ghiso JA, Alonso DF, Farias EF, Gomez DE, de Kier Joffe EB (1999) Deregulation of the signaling pathways controlling urokinase production. Its relationship with the invasive phenotype. Eur J Biochem 263:295–304

    Article  CAS  PubMed  Google Scholar 

  30. Brockman JA, Scherer DC, McKinsey TA, Hall SM, Qi X, Lee WY, Ballard DW (1995) Coupling of a signal response domain in IκBa to multiple pathways for NF-kB activation. Mol Cell Biol 15:2809–2818

    CAS  PubMed  Google Scholar 

  31. Hoppe-Seyler F, Butz K, Rittmuller C, von Knebel Doeberitz M (1991) A rapid microscale procedure for the simultaneous preparation of cytoplasmic RNA, nuclear DNA binding proteins and enzymatically active luciferase extracts. Nucleic Acids Res 19:5080

    Article  CAS  PubMed  Google Scholar 

  32. Erridge SC, Moller H, Price A, Brewster D (2007) International comparisons of survival from lung cancer: pitfalls and warnings. Nat Clin Pract Oncol 4:570–577

    Article  PubMed  Google Scholar 

  33. Gajra A, Newman N, Gamble GP, Abraham NZ, Kohman LJ, Graziano SL (2003) Impact of tumor size on survival in stage IA non-small cell lung cancer: a case for subdividing stage IA disease. Lung Cancer 42:51–57

    Article  PubMed  Google Scholar 

  34. McCracken M, Olsen M, Chen MS Jr, Jemal A, Thun M, Cokkinides V, Deapen D, Ward E (2007) Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA Cancer J Clin 57:190–205

    Article  PubMed  Google Scholar 

  35. Auerbach O, Garfinkel L, Parks VR (1975) Histologic types of lung cancer in relation to smoking habits, year of diagnosis and sites of metastasis. Chest 67:382–387

    Article  CAS  PubMed  Google Scholar 

  36. Singh RP, Deep G, Chittezhath M, Kaur M, Dwyer-Nield LD, Malkinson AM, Agarwal R (2006) Effect of silibinin on the growth and progression of primary lung tumors in mice. J Natl Cancer Inst 98:846–855

    Article  CAS  PubMed  Google Scholar 

  37. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, Chung J (2001) Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J 15:1953–1962

    Article  CAS  PubMed  Google Scholar 

  38. Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573

    Article  CAS  PubMed  Google Scholar 

  39. Kleiner DE, Stetler-Stevenson WG (1999) Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43:S42–S51

    Article  CAS  PubMed  Google Scholar 

  40. Nee L, Tuite N, Ryan MP, McMorrow T (2007) TNF-alpha and IL-1 beta-mediated regulation of MMP-9 and TIMP-1 in human glomerular mesangial cells. Nephron Exp Nephrol 107:e73–e86

    Article  CAS  PubMed  Google Scholar 

  41. Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A (2007) Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci 48:4360–4367

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the grant from the Subsidized Project of the Chung Hwa University, Tainan, Taiwan (97-HT-08011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Wei Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shieh, JM., Chiang, TA., Chang, WT. et al. Plumbagin inhibits TPA-induced MMP-2 and u-PA expressions by reducing binding activities of NF-κB and AP-1 via ERK signaling pathway in A549 human lung cancer cells. Mol Cell Biochem 335, 181–193 (2010). https://doi.org/10.1007/s11010-009-0254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0254-7

Keywords

Navigation