Skip to main content

Advertisement

Log in

Regulated expression of pancreatic triglyceride lipase after rat traumatic brain injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pancreatic triglyceride lipase (PTL), an enzyme of digestive system, plays very important roles in the digestion and absorption of lipids. However, its distribution and function in the central nervous system (CNS) remains unclear. In the present study, we mainly investigated the expression and cellular localization of PTL during traumatic brain injury (TBI). Western blot and RT–PCR analysis revealed that PTL was present in normal rat brain cortex. It gradually increased, reached a peak at the 3rd day after TBI, and then decreased. Double immunofluorescence staining showed that PTL was co-expressed with neuron, but had a few colocalizations in astrocytes. When TBI occurred in the rat cortex, the expression of PTL gradually increased, reached the peak at the 3rd day after TBI, and then decreased. Importantly, more PTL was colocalized with astrocytes, which is positive for proliferating cell nuclear antigen (PCNA). In addition, Western blot detection showed that the 3rd day post injury was not only the proliferation peak indicated by the elevated expression of PCNA, glial fibrillary acidic protein (GFAP) and cyclin D1, but also the apoptotic peak implied by the alteration of caspase-3 and bcl-2. These data suggested that PTL may be involved in the pathophysiology of TBI and PTL may be complicated after injury, more PTL was colocalized with astrocytes. Importantly, injury-induced expression of PTL was colabelled by proliferating cell nuclear antigen (proliferating cells marker), and the western blot for GFAP, PCNA and cyclin D1, showed that 3 days post injury was the proliferation peak, in coincidence to it, the protein level change of caspase-3 and bcl-2 revealed that the stage was peak of apoptotic too. These data suggested that PTL may be involved in the pathophysiology of TBI and that PTL may be implicated in the proliferation of astrocytes and the recovery of neurological outcomes. But the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of PTL after brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Marshall LF (2000) Epidemiology and cost of central nervous system injury. Clin Neurosurg 46:105–112

    CAS  PubMed  Google Scholar 

  2. Teasdale GM, Graham DI (1998) Craniocerebral trauma: protection and retrieval of the neuronal population after injury. Neurosurgery 43:723–738

    Article  CAS  PubMed  Google Scholar 

  3. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  CAS  PubMed  Google Scholar 

  4. Nortje J, Menon DK (2004) Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 17:711–718

    Article  PubMed  Google Scholar 

  5. Liu L, Rudin M, Kozlova EN et al (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131:64–73

    Article  CAS  PubMed  Google Scholar 

  6. Ridet JL, Malhotra SK, Privat A (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  7. Nicole O, Goldshmidt A, Hamill CE et al (2005) Activation of protease-activated receptor-1 triggers astrogliosis after brain injury. J Neurosci 25:4319–4329

    Article  CAS  PubMed  Google Scholar 

  8. Helmuth L (2001) Neuroscience. Glia tell neurons to build synapses. Science 291:569–570

    Article  CAS  PubMed  Google Scholar 

  9. Myer DJ, Gurkoff GG, Lee SM et al (2006) Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 129:2761–2772

    Article  CAS  PubMed  Google Scholar 

  10. Katayama Y, Becker DP, Tamura T et al (1990) Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900

    Article  CAS  PubMed  Google Scholar 

  11. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  13. Derewenda ZS (1994) Structure and function of lipases. Adv Protein Chem 45:1–52

    Article  CAS  PubMed  Google Scholar 

  14. Olivecrona G, Olivecrona T (1995) Triglyceride lipases and atherosclerosis. Curr Opin Lipidol 6:291–305

    Article  CAS  PubMed  Google Scholar 

  15. Winkler FK, D’Arcy A, Hunziker W et al (1990) Structure of human pancreatic lipase. Nature 343:771–774

    Article  CAS  PubMed  Google Scholar 

  16. Ebara T, Murase T, Okubo M et al (2009) Pancreatitis caused by hypertriglyceridemia in a patient compound heterozygous for Leu334Phe and -514C–>T in the hepatic lipase gene. Pancreas 38:233–235

    Article  PubMed  Google Scholar 

  17. Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

    Article  CAS  PubMed  Google Scholar 

  18. Crenon I, Foglizzo E, Kerfelec B et al (1998) Pancreatic lipase-related protein type I: a specialized lipase or an inactive enzyme. Protein Eng 11:135–142

    Article  CAS  PubMed  Google Scholar 

  19. Payne RM, Sims HF, Jennens ML et al (1994) Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am J Physiol 266:G914–G921

    CAS  PubMed  Google Scholar 

  20. He J, Liu J, Zhang Z et al (2009) Expression of fasciculation and elongation protein zeta-1 (FEZ1) in cultured rat neonatal astrocytes. Mole Cell Biochem 325:159–167

    Article  CAS  Google Scholar 

  21. Lorent K, Overbergh L, Moechars D et al (1995) Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macroglobulin receptor/low density lipoprotein receptor-related protein and of its ligands apolipoprotein E, lipoprotein lipase, alpha-2-macroglobulin and the 40,000 molecular weight receptor-associated protein. Neuroscience 65:1009–1025

    Article  CAS  PubMed  Google Scholar 

  22. Vilaro S, Camps L, Reina M et al (1990) Localization of lipoprotein lipase to discrete areas of the guinea pig brain. Brain Res 506:249–253

    Article  CAS  PubMed  Google Scholar 

  23. Paradis E, Clavel S, Julien P et al (2004) Lipoprotein lipase and endothelial lipase expression in mouse brain: regional distribution and selective induction following kainic acid-induced lesion and focal cerebral ischemia. Neurobiol Dis 15:312–325

    Article  CAS  PubMed  Google Scholar 

  24. Paradis E, Clement S, Julien P et al (2003) Lipoprotein lipase affects the survival and differentiation of neural cells exposed to very low density lipoprotein. J Biol Chem 278:9698–9705

    Article  CAS  PubMed  Google Scholar 

  25. Blain JF, Poirier J (2004) Cholesterol homeostasis and the pathophysiology of Alzheimer’s disease. Expert Rev Neurother 4:823–829

    Article  CAS  PubMed  Google Scholar 

  26. Sovic A, Panzenboeck U, Wintersperger A et al (2005) Regulated expression of endothelial lipase by porcine brain capillary endothelial cells constituting the blood-brain barrier. J Neurochem 94:109–119

    Article  CAS  PubMed  Google Scholar 

  27. Logan A, Frautschy SA, Gonzalez AM et al (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12:3828–3837

    CAS  PubMed  Google Scholar 

  28. Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4:229–237

    Article  CAS  PubMed  Google Scholar 

  29. Durand B, Gao FB, Raff M (1997) Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J 16:306–317

    Article  CAS  PubMed  Google Scholar 

  30. Allen RT, Hunter WJ, Agrawal DK (1997) Morphological and biochemical characterization and analysis of apoptosis. J Pharmacol Toxicol Methods 37:215–228

    Article  CAS  PubMed  Google Scholar 

  31. Erhardt L (1996) Biochemical markers in acute myocardial infarction—the beginning of a new era? Eur Heart J 17:1781–1782

    CAS  PubMed  Google Scholar 

  32. Eldadah BA, Faden AI (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 17:811–829

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Chopp M, Schultz L et al (1993) Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci 118:109–116

    Article  CAS  PubMed  Google Scholar 

  34. LaPlaca MC, Simon CM, Prado GR et al (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161:13–26

    Article  CAS  PubMed  Google Scholar 

  35. Tehranian R, Rose ME, Vagni V et al (2008) Disruption of Bax protein prevents neuronal cell death but produces cognitive impairment in mice following traumatic brain injury. J Neurotrauma 25:755–757

    Article  PubMed  Google Scholar 

  36. Feeney DM, Boreson MG, Linn RT et al (1981) Responses to cortical injury: I methodology and local effects of contusion in the rat. Brain Res 211:67–77

    Article  CAS  PubMed  Google Scholar 

  37. Sharma P, Benford B, Li ZZ et al (2009) Role of pyruvate dehydrogenase complex in traumatic brain injury and measurement of pyruvate. J Emerg Trauma Shock 2:67–72

    Article  PubMed  Google Scholar 

  38. Yu SJ, Kaneko Y, Bae E et al (2009) Severity of controlled cortical impact in traumatic brain injury in rats and mices dictates degree of behaving deficits. Brain Res 1287:157–163

    Article  CAS  PubMed  Google Scholar 

  39. Clarke WE, Berry M, Smith C et al (2001) Coordination of fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-2 (FGFR2) trafficking to nuclei of reactive astrocytes around cerebral lesions in adult rats. Mol Cell Neurosci 17:17–30

    Article  CAS  PubMed  Google Scholar 

  40. Leadbeater WE, Gonzalez AM, Logaras N (2006) Intracellular trafficking in neurons and glia of fibroblast growth factor-2, fibroblast growth factor receptor 1 and heparin sulphate proteoglycans in the injured adult rat cerebral cortex. J Neurochem 96:1189–1200

    Article  CAS  PubMed  Google Scholar 

  41. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  CAS  PubMed  Google Scholar 

  42. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432

    Article  CAS  PubMed  Google Scholar 

  43. Vance JE (2006) Lipid imbalance in the neurological disorder, Niemann-Pick C disease. FEBS Lett 580:5518–5524

    Article  CAS  PubMed  Google Scholar 

  44. Mattson MP, Cutler RG, Jo DG (2005) Alzheimer peptides perturb lipid-regulating enzymes. Nat Cell Biol 7:1045–1047

    Article  CAS  PubMed  Google Scholar 

  45. Adibhatla RM, Hatcher JF, Dempsey RJ (2006) Lipids and lipidomics in brain injury and diseases. AAPS J 8:314–321

    Google Scholar 

  46. Adibhatla RM, Hatcher JF (2007) Role of lipids in brain injury and diseases. Future Lipidol 2:403–422

    Article  CAS  PubMed  Google Scholar 

  47. Baum L, Wiebusch H, Pang CP (2000) Roles for lipoprotein lipase in Alzheimer’s disease: an association study. Microsc Res Tech 50:291–296

    Article  CAS  PubMed  Google Scholar 

  48. Baum L, Chen L, Masliah E et al (1999) Lipoprotein lipase mutations and Alzheimer’s disease. Am J Med Genet 88:136–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 30772242). The authors thank Dr Shen Aiguo and Dr Gao Shangfeng (Medical College of Nantong University, Nantong, China) for their generous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, J., Yan, M., Lu, Z. et al. Regulated expression of pancreatic triglyceride lipase after rat traumatic brain injury. Mol Cell Biochem 335, 127–136 (2010). https://doi.org/10.1007/s11010-009-0249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0249-4

Keywords

Navigation