Skip to main content

Advertisement

Log in

Manganese superoxide dismutase: effect of the ala16val polymorphism on protein, activity, and mRNA levels in human breast cancer cell lines and stably transfected mouse embryonic fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The manganese superoxide dismutase (MnSOD) ala16val polymorphism has been associated with various diseases including breast cancer. In the present study, we investigated levels of MnSOD protein, enzymatic activity, and mRNA with respect to MnSOD genotype in several human breast carcinoma cell lines and in mouse embryonic fibroblasts (MEF), developed from the MnSOD knockout mouse, stably expressing human MnSOD-ala and MnSOD-val. In human breast cell lines, the MnSOD-ala allele was associated with increased levels of MnSOD protein and MnSOD protein per unit mRNA. In the MEF transformants, MnSOD activity correlated fairly well with MnSOD protein levels. MnSOD mRNA expression was significantly lower in MnSOD-ala versus MnSOD-val lines. MnSOD protein and activity levels were not related to MnSOD genotype in the transformed MEF, although, as observed in the human breast cell lines, the MEF human MnSOD-ala lines produced significantly more human MnSOD protein per unit mRNA than the human MnSOD-val lines. This suggests that there is more efficient production of MnSOD-ala protein compared to MnSOD-val protein. Examination of several indicators of reactive oxygen species levels, including superoxide and hydrogen peroxide, in wild-type MEF and in MEF expressing similar elevated amounts of MnSOD-ala or val activity did not show differences related to the levels of MnSOD protein expression. In conclusion, in both human breast carcinoma cell lines and MEF cell lines stably transfected with human MnSOD, the MnSOD-ala allele was associated with increased production of MnSOD protein per unit mRNA indicating a possible imbalance in MnSOD protein production from the MnSOD-val mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ala:

Alanine

ETC:

Electron transport chain

MnSOD:

Manganese superoxide dismutase

MEF:

Mouse embryonic fibroblasts

MTS:

Mitochondrial targeting signal

Val:

Valine

References

  1. Montano M et al (2009) Association between manganese superoxide dismutase (MnSOD) gene polymorphism and elderly obesity. Mol Cell Biochem 328(1–2):33–40

    Google Scholar 

  2. Ambrosone CB et al (1999) Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59(3):602–606

    CAS  PubMed  Google Scholar 

  3. Mitrunen K et al (2001) Association between manganese superoxide dismutase (MnSOD) gene polymorphism and breast cancer risk. Carcinogenesis 22(5):827–829

    Article  CAS  PubMed  Google Scholar 

  4. Kocabas NA et al (2005) Genetic polymorphism of manganese superoxide dismutase (MnSOD) and breast cancer susceptibility. Cell Biochem Funct 23(1):73–76

    Article  CAS  PubMed  Google Scholar 

  5. Mollsten A et al (2007) A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes 56:265–269

    Article  PubMed  Google Scholar 

  6. Kang D et al (2007) Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol Biomarkers Prev 16(8):1581–1586

    Article  CAS  PubMed  Google Scholar 

  7. Ezzikouri S et al (2008) Genetic polymorphims in the manganese superoxide dismutase gene is associated with an increased risk for hepatocellular carcinoma in HCV-infected Moroccan patients. Mutat Res 649(1–2):1–6

    CAS  PubMed  Google Scholar 

  8. Zejnilovic J et al (2009) Association between manganese superoxide dismutase polymorphism and risk of lung cancer. Cancer Genet Cytogenet 189(1):1–4

    Article  CAS  PubMed  Google Scholar 

  9. Liu L et al (2009) The manganese superoxide dismutase Val16Ala polymorphism is associated with decreased risk of diabetic nephropathy in Chinese patients with type 2 diabetes. Mol Cell Biochem 322(1–2):87–91

    Article  CAS  PubMed  Google Scholar 

  10. Bica C et al (2009) MnSOD gene polymorphism association with steroid-dependent cancer. Pathol Oncol Res 15(1):19–24

    Google Scholar 

  11. Shimoda-Matsubayashi S et al (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. Biochem Biophys Res Commun 226:561–565

    Article  CAS  PubMed  Google Scholar 

  12. Hiroi S et al (1999) Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem Biophys Res Commun 261(2):332–339

    Article  CAS  PubMed  Google Scholar 

  13. Sutton A et al (2003) The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics 13:145–157

    Article  CAS  PubMed  Google Scholar 

  14. Sutton A et al (2005) The manganese superoxide dismutase Ala16Val dimorphism modulates both mitochondrial import and mRNA stability. Pharmacogenet Genomics 15(5):311–319

    Article  CAS  PubMed  Google Scholar 

  15. Kinnula VL et al (2004) Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am J Respir Cell Mol Biol 31(2):147–153

    Article  CAS  PubMed  Google Scholar 

  16. Elsakka NE, Webster NR, Galley HF (2007) Polymorphism in the manganese superoxide dismutase gene. Free Radic Res 41(7):770–778

    Article  CAS  PubMed  Google Scholar 

  17. Melov S et al (1999) Mitochondrial disease in superoxide 2 mutant mice. Proc Natl Acad Sci USA 96:846–851

    Article  CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Flohe L, Otting F (1984) Methods in enzymology. In: Packer L (ed) Oxygen radicals in biological systems. Academic Press, New York, pp 93–104

    Chapter  Google Scholar 

  20. MacMillan-Crow L et al (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. PNAS 93(21):11853–11858

    Article  CAS  PubMed  Google Scholar 

  21. Hanson B et al (2001) Cytochrome c oxidase-deficient patients have distinct subunity assembly profiles. J Biol Chem 276(19):16296–16301

    Article  CAS  PubMed  Google Scholar 

  22. Bastaki M et al (2006) Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics 16:279–286

    Article  CAS  PubMed  Google Scholar 

  23. Vina J et al (2006) Part of the series: from dietary antioxidants to regulators in cellular signaling and gene expression role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radic Res 40(2):111–119

    Article  CAS  PubMed  Google Scholar 

  24. Rochefort H et al (2003) How to target estrogen receptor-negative breast cancer? Endocr Relat Cancer 10(2):261–266

    Article  CAS  PubMed  Google Scholar 

  25. Boyan BD et al (2003) Estrogen-dependent rapid activation of protein kinase C in estrogen receptor-positive MCF-7 breast cancer cells and estrogen receptor-negative HCC38 cells is membrane-mediated and inhibited by tamoxifen. Endocrinology 144(5):1812–1824

    Article  CAS  PubMed  Google Scholar 

  26. Shyu R et al (2005) Expression and regulation of retinoid-inducible gene 1 (RIG1) in breast cancer. Anticancer Res 25(3c):2453–2460

    CAS  PubMed  Google Scholar 

  27. Greene G, Press M (1986) Structure and dynamics of the estrogen receptor. J Steroid Biochem 24(1):1–7

    Article  CAS  PubMed  Google Scholar 

  28. Rochefort H et al (1984) Steroidal and nonsteroidal antiestrogens in breast cancer cells in culture. J Steroid Biochem 20(1):105–110

    Article  CAS  PubMed  Google Scholar 

  29. Mobley JA, Brueggemeier RW (2004) Estrogen receptor-mediated regulation of oxidative stress and DNA damage in breast cancer. Carcinogenesis 25(1):3–9

    Article  CAS  PubMed  Google Scholar 

  30. Wright G et al (2001) Oxidative stress inhibits the mitochondrial import of preproteins and leads to their degradation. Exp Cell Res 263(1):107–117

    Article  CAS  PubMed  Google Scholar 

  31. Zhang HJ et al (1999) Comparison of effects of two polymorphic variants of manganese superoxide dismutase on human breast MCF-7 cancer cell phenotype. Cancer Res 59(24):6276–6283

    CAS  PubMed  Google Scholar 

  32. Li N, Zhai Y, Oberley TD (1999) Two distinct mechanisms for inhibition of cell growth in human prostate carcinoma cells with antioxidant enzyme imbalance. Free Radic Biol Med 26(11–12):1554–1568

    Article  CAS  PubMed  Google Scholar 

  33. Li N et al (1998) Overexpression of manganese superoxide dismutase in DU145 human prostate carcinoma cells has multiple effects on cell phenotype. Prostate 35(3):221–233

    Article  CAS  PubMed  Google Scholar 

  34. Li N et al (1998) Inhibition of cell growth in NIH/3T3 fibroblasts by overexpression of manganese superoxide dismutase: mechanistic studies. J Cell Physiol 175(3):359–369

    Article  CAS  PubMed  Google Scholar 

  35. Kelner M, Bagnell R (1990) Alteration of endogenous glutathione peroxidase, manganese superoxide dismutase, and glutathione transferase activity in cells transfected with a copper-zinc superoxide dismutase expression vector. Explanation for variations in paraquat resistance. J Biol Chem 265(19):10872–10875

    CAS  PubMed  Google Scholar 

  36. Kelner MJ et al (1995) Transfection with human copper-zinc superoxide dismutase induces bidirectional alterations in other antioxidant enzymes, proteins, growth factor response, and paraquat resistance. Free Radic Biol Med 18(3):497–506

    Article  CAS  PubMed  Google Scholar 

  37. Melendez JA et al (1999) Nitric oxide enhances the manganese superoxide dismutase-dependent suppression of proliferation in HT-1080 fibrosarcoma cells. Cell Growth Differ 10(9):655–664

    CAS  PubMed  Google Scholar 

  38. Hu H et al (2007) Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophogeal squamous cell carcinomas. Chin Med J 120(23):2092–2098

    CAS  PubMed  Google Scholar 

  39. Malafa M et al (2000) MnSOD expression is increased in metastatic gastric cancer. J Surg Res 88(2):130–134

    Article  CAS  PubMed  Google Scholar 

  40. Markland S et al (1982) Copper- and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalse and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res 42:1955–1961

    Google Scholar 

  41. Schadendorf D et al (1995) Serum manganese superoxide dismutase is a new tumour marker for malignant melanoma. Melanoma Res 5:351–353

    Article  CAS  PubMed  Google Scholar 

  42. Tsanou E et al (2004) Immunohistochemical expression of superoxide dismutase (MnSOD) anti-oxidant enzyme in invasive breast carcinoma. Histol Histopathol 19(3):807–813

    CAS  PubMed  Google Scholar 

  43. Nozoe T et al (2003) Significance of immunohistochemical expression of manganese superoxide dismutase as a marker of malignant potential in colorectal carcinoma. Oncol Rep 10(1):39–43

    CAS  PubMed  Google Scholar 

  44. Mohr A et al (2008) MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 27:763–774

    Article  CAS  PubMed  Google Scholar 

  45. Wenk J et al (1999) Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix adenocarcinoma cells. Clin Cancer Res 5:119–127

    Google Scholar 

  46. Zhang HJ et al (2002) Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem 277(23):20919–20926

    Article  CAS  PubMed  Google Scholar 

  47. Takada Y et al (2002) Role of reactive oxygen species in cells overexpressing manganese superoxide dismutase: mechanism for induction of radioresistance. Mol Cancer Res 1(2):137–146

    CAS  PubMed  Google Scholar 

  48. Connor KM et al (2005) Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280(17):16916–16924

    Article  CAS  PubMed  Google Scholar 

  49. Xu Y et al (2008) Mutations in the SOD2 promoter reveal a molecular basis for an activating protein 2-dependent dysregulation of manganese superoxide dismutase expression in cancer cells. Mol Cancer Res 6(12):1881–1893

    Article  CAS  PubMed  Google Scholar 

  50. Nakano T, Oka K, Taniguchi N (1996) Manganese superoxide dismutase expression correlates with p53 status and local recurrence of cervical carcinoma treated with radiation therapy. Cancer Res 56:2771–2775

    CAS  PubMed  Google Scholar 

  51. Zhao Y, Chaiswing L, Velez J (2005) p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 65:3745–3750

    Article  CAS  PubMed  Google Scholar 

  52. Behrend L et al (2005) Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol 25(17):7758–7769

    Article  CAS  PubMed  Google Scholar 

  53. Pani G, Colavitti R, Bedogni B (2004) Mitochondrial superoxide dismutase: a promising target for new anticancer therapies. Curr Med Chem 11:1299–1308

    CAS  PubMed  Google Scholar 

  54. Kiningham KK et al (1999) Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J 13(12):1601–1610

    CAS  PubMed  Google Scholar 

  55. Cai Q et al (2004) Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Breast Cancer Res 6(6):R647–R655

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants T32ESO7141 and R03CA94747 and center grant P30ES03819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Yager.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAtee, B.L., Yager, J.D. Manganese superoxide dismutase: effect of the ala16val polymorphism on protein, activity, and mRNA levels in human breast cancer cell lines and stably transfected mouse embryonic fibroblasts. Mol Cell Biochem 335, 107–118 (2010). https://doi.org/10.1007/s11010-009-0247-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0247-6

Keywords

Navigation