Skip to main content
Log in

Identification of functional corticosteroid response elements involved in regulation of Cacna1g expression in cardiac myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We recently reported that corticosteroids increase the expression of the T-type channel Cav3.1 through a transcriptional up-regulation of the Cav3.1 encoding gene cacna1g. The nucleotide sequence analysis of cacna1g promoter revealed putative glucocorticoid response elements (GREs). However, the functional GREs involved in the regulation of cacna1g expression in neonatal cardiac myocytes are unknown. In the present study we have investigated the nuclear targets responsible for the transcriptional regulation of cacna1g. We identified five GREs from the nucleotide sequence of cacna1g promoter. Additionally, using punctual mutagenesis approach, three functional categories of GREs have been identified: (i) GRE-1 involved in promoter activity induced by aldosterone (Aldo, 1 μM); (ii) GRE-4 and GRE-5 involved in promoter activity induced by dexamethasone (Dex, 1 μM); and (iii) GRE-2 and GRE-3 involved in the basal level of neonatal promoter activity. The data presented here lead to better understanding of the molecular mechanisms underlying the regulation of Cav3.1 channel expression by corticosteroids. These new findings have attractive physiological features during cardiac development and pathology such as arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Maturana A, Lenglet S, Python M, Kuroda S, Rossier MF (2009) Role of the T-type calcium channel CaV3.2 in the chronotropic action of corticosteroids in isolated rat ventricular myocytes. Endocrinology 150(8):3726–3734

    Google Scholar 

  2. Cribbs LL, Martin BL, Schroder EA, Keller BB, Delisle BP, Satin J (2001) Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res 88:403–407

    CAS  PubMed  Google Scholar 

  3. Bkaily G, Sculptoreanu A, Jacques D, Economos D, Menard D (1992) Apamin, a highly potent fetal L-type Ca2+ current blocker in single heart cells. Am J Physiol 262:H463–H471

    CAS  PubMed  Google Scholar 

  4. Ferron L, Capuano V, Deroubaix E, Coulombe A, Renaud JF (2002) Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 34:533–546

    Article  CAS  PubMed  Google Scholar 

  5. Ferron L, Capuano V, Ruchon Y, Deroubaix E, Coulombe A, Renaud JF (2003) Angiotensin II signaling pathways mediate expression of cardiac T-type calcium channels. Circ Res 93:1241–1248

    Article  CAS  PubMed  Google Scholar 

  6. Vassort G, Talavera K, Alvarez JL (2006) Role of T-type Ca2+ channels in the heart. Cell Calcium 40:205–220

    Article  CAS  PubMed  Google Scholar 

  7. Jaeggi ET, Fouron JC, Silverman ED, Ryan G, Smallhorn J, Hornberger LK (2004) Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation 110:1542–1548

    Article  PubMed  Google Scholar 

  8. Halliday HL (2004) Use of steroids in the perinatal period. Paediatr Respir Rev 5(Suppl A):S321–S327

    Google Scholar 

  9. Edwards CR, Benediktsson R, Lindsay RS, Seckl JR (1993) Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet 341:355–357

    Article  CAS  PubMed  Google Scholar 

  10. Kamphuis PJ, de Vries WB, Bakker JM, Kavelaars A, van Dijk JE, Schipper ME, van Oosterhout MF, Croiset G, Heijnen CJ, van Bel F, Wiegant VM (2007) Reduced life expectancy in rats after neonatal dexamethasone treatment. Pediatr Res 61:72–76

    Article  CAS  PubMed  Google Scholar 

  11. Lalevee N, Rebsamen MC, Barrere-Lemaire S, Perrier E, Nargeot J, Benitah JP, Rossier MF (2005) Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes. Cardiovasc Res 67:216–224

    Article  CAS  PubMed  Google Scholar 

  12. Benmohamed F, Ferron L, Ruchon Y, Gouadon E, Renaud JF, Capuano V (2009) Regulation of T-type Ca(v)3.1 channels expression by synthetic glucocorticoid dexamethasone in neonatal cardiac myocytes. Mol Cell Biochem 320:173–183

    Article  CAS  PubMed  Google Scholar 

  13. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  Google Scholar 

  14. Schoneveld OJ, Gaemers IC, Lamers WH (2004) Mechanisms of glucocorticoid signalling. Biochim Biophys Acta 1680:114–128

    CAS  PubMed  Google Scholar 

  15. Stahn C, Lowenberg M, Hommes DW, Buttgereit F (2007) Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 275:71–78

    Article  CAS  PubMed  Google Scholar 

  16. De Bosscher K, Van Craenenbroeck K, Meijer OC, Haegeman G (2008) Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. Eur J Pharmacol 583:290–302

    Article  CAS  PubMed  Google Scholar 

  17. Adcock IM, Caramori G, Ito K (2006) New insights into the molecular mechanisms of corticosteroids actions. Curr Drug Targets 7:649–660

    Article  CAS  PubMed  Google Scholar 

  18. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24:488–522

    Article  CAS  PubMed  Google Scholar 

  19. Ito K, Getting SJ, Charron CE (2006) Mode of glucocorticoid actions in airway disease. ScientificWorldJournal 6:1750–1769

    Article  CAS  PubMed  Google Scholar 

  20. Necela BM, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor action in noninflammatory and inflammatory cells. Proc Am Thorac Soc 1:239–246

    Article  CAS  PubMed  Google Scholar 

  21. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR (1990) Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249:1266–1272

    Article  CAS  PubMed  Google Scholar 

  22. Imai E, Miner JN, Mitchell JA, Yamamoto KR, Granner DK (1993) Glucocorticoid receptor-cAMP response element-binding protein interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids. J Biol Chem 268:5353–5356

    CAS  PubMed  Google Scholar 

  23. Subramaniam N, Cairns W, Okret S (1998) Glucocorticoids repress transcription from a negative glucocorticoid response element recognized by two homeodomain-containing proteins, Pbx and Oct-1. J Biol Chem 273:23567–23574

    Article  CAS  PubMed  Google Scholar 

  24. Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, Herrlich P (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204

    Article  CAS  PubMed  Google Scholar 

  25. Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S, Kasahara T, Matsushima K (1994) Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-kappa B is target for glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem 269:13289–13295

    CAS  PubMed  Google Scholar 

  26. Stoecklin E, Wissler M, Moriggl R, Groner B (1997) Specific DNA binding of Stat5, but not of glucocorticoid receptor, is required for their functional cooperation in the regulation of gene transcription. Mol Cell Biol 17:6708–6716

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima BenMohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BenMohamed, F., Ruchon, Y., Capuano, V. et al. Identification of functional corticosteroid response elements involved in regulation of Cacna1g expression in cardiac myocytes. Mol Cell Biochem 335, 47–51 (2010). https://doi.org/10.1007/s11010-009-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0239-6

Keywords

Navigation