Skip to main content
Log in

Effect of in vitro exposure of human serum to 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The objective of this study was to verify the effect of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in human serum. Serum of volunteers were incubated for 30 min in the presence or absence of 1, 10, or 30 μM of 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one and oxidative stress was measured. First, we tested the influence of the compound on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and verified that the organotellurium did not have any antioxidant properties. The organochalcogen was capable to enhance TBARS but the compound was not able to alter carbonyl assay. Furthermore, the organochalcogen provoked a reduction of protein thiol groups measured by the sulfhydryl assay. Moreover, the organotellurium enhanced the activity of catalase and superoxide dismutase, inhibited the activity of glutathione peroxidase and did not modify the glutathione S-transferase activity. Furthermore, nitric oxide production and hydroxyl radical activity were not affected by the compound. Our findings showed that this organochalcogen induces oxidative stress in human serum, indicating that this compound is potentially toxic to human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yarema MC, Curry SC (2005) Acute tellurium toxicity from ingestion of metal-oxidizing solutions. Pediatrics 116:319–321

    Article  Google Scholar 

  2. Yamada N, Kojima R, Uno M, Akiyama T, Kitaura H, Narumi K, Nishiuchi K (2002) Phase-change material for use in rewritable dual-layer optical disk. SPIE 4342:4355–4363

    Google Scholar 

  3. Meotti FC, Borges VC, Zeni G, Rocha JB, Nogueira CW (2003) Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol Lett 143:9–16

    Article  PubMed  CAS  Google Scholar 

  4. Savegnago L, Borges VC, Alves D, Jesse CR, Rocha JB, Nogueira CW (2006) Evaluation of antioxidant activity and potential toxicity of 1-buthyltelurenyl-2-methylthioheptene. Life Sci 79:1546–1552

    Article  PubMed  CAS  Google Scholar 

  5. Rooseboom M, Vermeulen NP, Durgut F, Commandeur JN (2002) Comparative study on the bioactivation mechanisms and cytotoxicity of Te-phenyl-l-tellurocysteine, Se-phenyl-l-selenocysteine, and S-phenyl-l-cysteine. Chem Res Toxicol 15:1610–1618

    Article  PubMed  CAS  Google Scholar 

  6. Sailer BL, Liles N, Dickerson S, Chasteen TG (2003) Cytometric determination of novel organotellurium compound toxicity in a promyelocitic (HL-60) cell line. Arch Toxicol 77:30–36

    Article  PubMed  CAS  Google Scholar 

  7. Sailer BL, Liles N, Dickerson S, Sumners S, Chasteen TG (2004) Organotellurium compound toxicity in a promyelocytic cell line compared to non-tellurium-containing organic analog. Toxicol In Vitro 18:475–482

    Article  PubMed  CAS  Google Scholar 

  8. Iwase K, Tatsuishi T, Nishimura Y, Yamaguchi JY, Oyama Y, Miyoshi N, Wada M (2004) Cytometric analysis of adverse action of diphenyl ditelluride on rat thymocytes: cell shrinkage as a cytotoxic parameter. Environ Toxicol 19:614–619

    Article  PubMed  CAS  Google Scholar 

  9. Nogueira CW, Rotta LN, Perry ML, Souza DO, da Rocha JB (2001) Diphenyl diselenide and diphenyl ditelluride affect the rat glutamatergic system in vitro and in vivo. Brain Res 906:157–163

    Article  PubMed  CAS  Google Scholar 

  10. Nogueira CW, Zeni G, Rocha JB (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104:6255–6285

    Article  PubMed  CAS  Google Scholar 

  11. Stangherlin EC, Favero AM, Zeni G, Rocha JB, Nogueira CW (2005) Teratogenic vulnerability of Wistar rats to diphenyl ditelluride. Toxicology 207:231–239

    Article  PubMed  CAS  Google Scholar 

  12. Moretto MB, Funchal C, Zeni G, Rocha JB, Pessoa-Pureur R (2005) Organoselenium compounds prevent hyperphosphorylation of cytoskeletal proteins induced by the neurotoxic agent diphenyl ditelluride in cerebral cortex of young rats. Toxicology 210:213–222

    Article  PubMed  CAS  Google Scholar 

  13. Funchal C, Moretto MB, Vivian L, Zeni G, Rocha JB, Pessoa-Pureur R (2006) Diphenyl ditelluride- and methylmercury-induced hyperphosphorylation of the high molecular weight neurofilament subunit is prevented by organoselenium compounds in cerebral cortex of young rats. Toxicology 222:143–153

    Article  PubMed  CAS  Google Scholar 

  14. Borges VC, Rocha JB, Nogueira CW (2005) Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na(+), K(+)-ATPase activity in rats. Toxicology 215:191–197

    Article  PubMed  CAS  Google Scholar 

  15. Nogueira CW, Borges VC, Zeni G, Rocha JB (2003) Organochalcogens effects on delta-aminolevulinate dehydratase activity from human erythrocytic cells in vitro. Toxicology 191:169–178

    Article  PubMed  CAS  Google Scholar 

  16. Laden BP, Porter TD (2001) Inhibition of human squalene monooxygenase by tellurium compounds: evidence of interaction with vicinal sulfhydryls. J Lipid Res 42:235–240

    PubMed  CAS  Google Scholar 

  17. Lenardão EJ, Silva MS, Mendes SR, Azambuja F, Jacob RG, Santos PCS, Perin G (2007) Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions. J Braz Chem Soc 18:943–950

    Article  Google Scholar 

  18. Comasseto JV, Ling LW, Petragnani N, Stefani HA (1997) Vinylic selenides and tellurides-preparation, reactivity a synthetic application. Synthesis 4:373

    Article  Google Scholar 

  19. Goeger DE, Ganther HE (1994) Oxidation of dimethylselenide to dimethylselenoxide by microsomes from rat liver and lung and by flavin-containing monooxygenase from pig liver. Arch Biochem Biophys 310:448–451

    Article  PubMed  CAS  Google Scholar 

  20. Bjornstedt M, Odlander B, Kuprin S, Claesson HE, Holmgren A (1996) Selenite incubated with NADPH and mammalian thioredoxin reductase yields selenide, which inhibits lipoxygenase and changes the electron spin resonance spectrum of the active site iron. Biochemistry 35:8511–8516

    Article  PubMed  CAS  Google Scholar 

  21. Park HS, Park E, Kim MS, Ahn K, Kim IY, Choi EJ (2000) Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism. J Biol Chem 275:2527–2531

    Article  PubMed  CAS  Google Scholar 

  22. Gupta N, Porter TD (2001) Inhibition of human squalene monooxigenase by selenium compounds. J Biochem Mol Toxicol 16:18–23

    Article  CAS  Google Scholar 

  23. Chen F, Vallyathan V, Castranova V, Shi X (2001) Cell apoptosis induced by carcinogenic metals. Mol Cell Biochem 222:183–188

    Article  PubMed  CAS  Google Scholar 

  24. Halliwell BG, Gutteridge JMC (2007) Measurement of reactive species. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  25. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  26. Diplock AT (1994) Antioxidants and free radical scavengers. Elsevier, Amsterdam, pp 113–130

    Google Scholar 

  27. Heffner JA, Repine RJ (1989) State of the art: pulmonary strategies of antioxidant defense. Am Rev Respir Dis 140:531–554

    PubMed  CAS  Google Scholar 

  28. Alho H, Leinonen JS, Erhola M, Lonnrot K, Aejmelaeus R (1998) Assay of antioxidant capacity of human plasma and CSF in aging and disease. Restor Neurol Neurosci 12:159–165

    PubMed  CAS  Google Scholar 

  29. Funchal C, Latini A, Jacques-Silva MC, Dos Santos AQ, Buzin L, Gottfried C, Wajner M, Pessoa-Pureur R (2006) Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Int 49:640–650

    Article  PubMed  CAS  Google Scholar 

  30. Petragnani N (1994) Tellurium in organic synthesis. Academic Press, New York

    Google Scholar 

  31. Zeni G, Braga AL, Stefani HA (2003) Palladium-catalyzed coupling of sp(2)-hybridized tellurides. Acc Chem Res 36:731–738

    Article  PubMed  CAS  Google Scholar 

  32. Zeni G, Ludtke DS, Panatieri RB, Braga AL (2006) Vinylic tellurides: from preparation to their applicability in organic synthesis. Chem Rev 106:1032–1076

    Article  PubMed  CAS  Google Scholar 

  33. Silveira CC, Braga AL, Guerra RB (2002) Stereoselective synthesis of alpha-phenylchalcogeno-alpha, beta-unsaturated esters. Tetrahedron Lett 43:3395–3397

    Article  CAS  Google Scholar 

  34. Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204

    Article  PubMed  CAS  Google Scholar 

  35. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  36. Reznick AZ, Packer L (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  37. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:14114–14115

    Article  Google Scholar 

  38. Marklund S (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton

    Google Scholar 

  39. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  40. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  41. Guthenberg C, Mannervik B (1981) Glutathione S-transferase (transferase pi) from human placenta is identical or closely related to glutathione S-transferase (transferase rho) from erythrocytes. Biochim Biophys Acta 661:255–260

    PubMed  CAS  Google Scholar 

  42. Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233:250–258

    Article  PubMed  CAS  Google Scholar 

  43. Halliwell B, Gutteridge JM (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 128:347–352

    Article  PubMed  CAS  Google Scholar 

  44. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  45. Maciel EN, Bolzan RC, Braga AL, Rocha JB (2000) Diphenyl diselenide and diphenyl ditelluride differentially affect delta-aminolevulinate dehydratase from liver, kidney, and brain of mice. J Biochem Mol Toxicol 14:310–319

    Article  PubMed  CAS  Google Scholar 

  46. Widy-Tyszkiewicz E, Piechal A, Gajkowska B, Smialek M (2002) Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicol Lett 131:203–214

    Article  PubMed  CAS  Google Scholar 

  47. Vinson JA (1998) Flavonoids in foods as in vitro and in vivo antioxidants. Adv Exp Med Biol 439:151–164

    PubMed  CAS  Google Scholar 

  48. Borges VC, Rocha JB, Savegnago L, Nogueira CW (2007) Repeated administration of diphenyl ditelluride induces hematological disorders in rats. Food Chem Toxicol 45:1453–1458

    Article  PubMed  CAS  Google Scholar 

  49. Avila DS, Gubert P, Dalla Corte CL, Alves D, Nogueira CW, Rocha JB, Soares FA (2007) A biochemical and toxicological study with diethyl 2-phenyl-2-tellurophenyl vinylphosphonate in a sub-chronic intraperitoneal treatment in mice. Life Sci 80:1865–1872

    Article  PubMed  CAS  Google Scholar 

  50. Tremaroli V, Fedi S, Zannoni D (2007) Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187:127–135

    Article  PubMed  CAS  Google Scholar 

  51. Zugno AI, Stefanello FM, Scherer EB, Mattos C, Pederzolli CD, Andrade VM, Wannmacher CM, Wajner M, Dutra-Filho CS, Wyse AT (2008) Guanidinoacetate decreases antioxidant defenses and total protein sulfhydryl content in striatum of rats. Neurochem Res 33:1804–1810

    Article  PubMed  CAS  Google Scholar 

  52. Amici A, Levine RL, Tsai L, Stadtmans ER (1989) Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J Biol Chem 264:3341–3346

    PubMed  CAS  Google Scholar 

  53. Yan LJ (2009) Analysis of oxidative modification of proteins. Curr Prot Cell Biol, Chap. 14, Unit 14.4

  54. Doucet A (1988) Function and control of Na-K-ATPase in single nephron segments of the mammalian kidney. Kidney Int 34:749–760

    Article  PubMed  CAS  Google Scholar 

  55. Jorgensen PL (1986) Structure, function and regulation of Na, K-ATPase in the kidney. Kidney Int 29:10–20

    Article  PubMed  CAS  Google Scholar 

  56. Jaffe EK (1995) Porphobilinogen synthase, the first source of heme’s asymmetry. J Bioenerg Biomembr 27:169–179

    Article  PubMed  CAS  Google Scholar 

  57. Bechara EJH, Medeiros MHG, Monteiro HP, Hermes-Lima M, Pereira B, Demasi M, Costa C, Adballa DSP, Onuki J, Wendel CMA, Masci PD (1993) A free radical hypothesis of lead poisoning and in born porphyrias associated with 5-aminolevulinic overload. Quimica Nova 16:385–392

    CAS  Google Scholar 

  58. Emanuelli T, Pagel FW, Alves LB, Regner A, Souza DO (2001) Inhibition of adenylate cyclase activity by 5-aminolevulinic acid in rat and human brain. Neurochem Int 38:213–218

    Article  PubMed  CAS  Google Scholar 

  59. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  60. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  CAS  Google Scholar 

  61. Remacle J, Michiels C, Raes M (1992) The importance of antioxidant enzymes in cellular aging and degeneration. EXS 62:99–108

    PubMed  CAS  Google Scholar 

  62. Kaur P, Yousuf S, Ansari MA, Siddiqui A, Ahmad AS, Islam F (2003) Tellurium-induced dose-dependent impairment of antioxidant status: differential effects in cerebrum, cerebellum, and brainstem of mice. Biol Trace Elem Res 94:247–258

    Article  PubMed  CAS  Google Scholar 

  63. Borsetti F, Tremaroli V, Michelacci F, Borghese R, Winterstein C, Daldal F, Zannoni D (2005) Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions. Res Microbiol 156:807–813

    Article  PubMed  CAS  Google Scholar 

  64. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    Article  PubMed  CAS  Google Scholar 

  65. Yamakura F, Matsumoto T, Ikeda K, Taka H, Fujimura T, Murayama K, Watanabe E, Tamaki M, Imai T, Takamori K (2005) Nitrated and oxidized products of a single tryptophan residue in human Cu, Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. J Biochem 138:57–69

    Article  PubMed  CAS  Google Scholar 

  66. Halliwell B (1994) Free radicals and antioxidants: a personal view. Nutr Rev 52:253–265

    Article  PubMed  CAS  Google Scholar 

  67. Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  PubMed  CAS  Google Scholar 

  68. Strayo D, Adhikari S, Tilak-Jain J, Menon VP, Devasagayam TPA (2008) Antioxidant activity of an aminothiazole compound: possible mechanisms. Chem-Biol Interact 173:215–223

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Centro Universitário Metodista IPA and Universidade de Caxias do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Funchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, C.A.S., Gemelli, T., Guerra, R.B. et al. Effect of in vitro exposure of human serum to 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on oxidative stress. Mol Cell Biochem 332, 127–134 (2009). https://doi.org/10.1007/s11010-009-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0182-6

Keywords

Navigation