Skip to main content

Advertisement

Log in

Proteomic analysis reveals significant elevation of heat shock protein 70 in patients with chronic heart failure due to arrhythmogenic right ventricular cardiomyopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

As proteins are the ultimate biological determinants of phenotype of disease, we screened altered proteins associated with heart failure due to arrhythmogenic right ventricular cardiomyopathy (ARVC) to identify biomarkers potential for rapid diagnosis of heart failure. By 2-dimensional gel electrophoresis and mass spectrometry, we identified five commonly altered proteins with more than 1.5 fold changes in eight ARVC failing hearts using eight non-failing hearts as reference. Noticeably, one of the altered proteins, heat shock protein 70 (HSP70), was increased by 1.64 fold in ARVC failing hearts compared with non-failing hearts. The increase of cardiac HSP70 was further validated by Western blot, immunochemistry, and enzyme-linked immunosorbent assay (ELISA) in failing hearts due to not only ARVC, but also dilated (DCM, n = 18) and ischemic cardiomyopathy (ICM, n = 8). Serum HSP70 was also observed to be significantly increased in heart failure patients derived from the three forms of cardiomyopathies. In addition, we observed hypoxia/serum depletion stimulation induced significantly elevation of intracellular and extracellular HSP70 in cultured neonatal rat cardiomyocytes. For the first time to our knowledge, we revealed and clearly demonstrated significant up-regulation of cardiac and serum HSP70 in ARVC heart failure patients. Our results indicate that elevated HSP70 is the common feature of heart failure due to ARVC, DCM, and ICM, which suggests that HSP70 may be used as a biomarker for the presence of heart failure due to cardiomyopathies of different etiologies and may hold diagnostic/prognostic potential in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McGregor E, Dunn MJ (2003) Proteomics of heart disease. Human Mol Genet 12:R135–R144. doi:10.1093/hmg/ddg278

    Article  CAS  Google Scholar 

  2. Shailja V, Parikh SV, De Lemos JA (2006) Biomarkers in cardiovascular disease: integrating pathophysiology into clinical practice. Am J Med Sci 332:186–197

    Article  Google Scholar 

  3. Basso C, Corrado D, Marcus FI, Nava A, Thiene G (2009) Arrhythmogenic right ventricular cardiomyopathy. Lancet 373:1289–1300

    Article  PubMed  Google Scholar 

  4. Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew CC (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol 160:2035–2043

    PubMed  CAS  Google Scholar 

  5. Genth-Zotz S, Bolger AP, Kalra PR, von Haehling S, Doehner W, Coats AJ (2004) Heat shock protein 70 in patients with chronic heart failure: relation to disease severity and survival. Int J Cardiol 96:397–401. doi:10.1016/j.ijcard.2003.08.008

    Article  PubMed  Google Scholar 

  6. Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, Mann DL (1998) Differential expression of heat shock proteins in normal and failing human hearts. J Mol Cell Cardiol 30:811–818. doi:10.1006/jmcc.1998.0646

    Article  PubMed  CAS  Google Scholar 

  7. Zhu J, Quyyumi AA, Wu H, Csako G, Rott D, Zalles-Ganley A, Ogunmakinwa J, Halcox J, Epstein SE (2003) Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 23:1055–1059. doi:10.1161/01.ATV.0000074899.60898.FD

    Article  PubMed  CAS  Google Scholar 

  8. Corbett JM, Why HJ, Wheeler CH, Richardson PJ, Archard LC, Yacoub MH, Dunn MJ (1998) Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 19:2031–2042. doi:10.1002/elps.1150191123

    Article  PubMed  CAS  Google Scholar 

  9. Heinke MY, Wheeler CH, Chang D, Einstein R, Drake-Holland A, Dunn MJ, dos Remedios CG (1998) Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electrophoresis 19:2021–2030. doi:10.1002/elps.1150191122

    Article  PubMed  CAS  Google Scholar 

  10. Arab S, Gramolini AO, Ping P, Kislinger T, Stanley B, van Eyk J, Ouzounian M, MacLennan DH, Emili A, Liu PP (2006) Cardiovascular proteomics: tools to develop novel biomarkers and potential applications. J Am Coll Cardiol 48:1733–1741. doi:10.1016/j.jacc.2006.06.063

    Article  PubMed  CAS  Google Scholar 

  11. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, Gallopin M, Salvadori P, Sorace O, Carpeggiani C, Poddighe R, L’Abbate A, Parodi O (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193. doi:10.1161/hc0202.102119

    Article  PubMed  Google Scholar 

  12. Vasan RS (2006) Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation 113:2335–2362. doi:10.1161/CIRCULATIONAHA.104.482570

    Article  PubMed  Google Scholar 

  13. Dybdahl B, Slørdahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91:299–304. doi:10.1136/hrt.2003.028092

    Article  PubMed  CAS  Google Scholar 

  14. Lainscak M, von Haehling S, Anker SD (2009) Natriuretic peptides and other biomarkers in chronic heart failure: from BNP, NT-proBNP, and MR-proANP to routine biochemical markers. Int J Cardiol 132:303–311. doi:10.1016/j.ijcard.2008.11.149

    Article  PubMed  Google Scholar 

  15. Boheler KR, Volkova M, Morrell C, Garg R, Zhu Y, Margulies K, Seymour AM, Lakatta EG (2003) Sex- and age-dependent human transcriptome variability: implications for chronic heart failure. Proc Natl Acad Sci USA 100:2754–2759. doi:10.1073/pnas.0436564100

    Article  PubMed  CAS  Google Scholar 

  16. Yung CK, Halperin VL, Tomaselli GF, Winslow RL (2004) Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics 83:281–297. doi:10.1016/j.ygeno.2003.08.007

    Article  PubMed  CAS  Google Scholar 

  17. Kawana K, Miyamoto Y, Tanonaka K, Han-no Y, Yoshida H, Takahashi M, Takeo S (2000) Cytoprotective mechanism of heat shock protein 70 against hypoxia/reoxygenation injury. J Mol Cell Cardiol 32:2229–2237. doi:10.1006/jmcc.2000.1250

    Article  PubMed  CAS  Google Scholar 

  18. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ (2007) Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115:1710–1720. doi:10.1161/CIRCULATIONAHA.106.660241

    Article  PubMed  Google Scholar 

  19. Page B, Young R, Iyer V, Suzuki G, Lis M, Patel Korotchkina L, MS Blumenthal KM, Fallavollita JA, Canty JM (2008) Persistent regional downregulation in mitochondrial enzymes and upregulation of stress proteins in swine with chronic hibernating myocardium. Circ Res 102:103–112. doi:10.1161/CIRCRESAHA.107.155895

    Article  PubMed  CAS  Google Scholar 

  20. Wei YJ, Huang YX, Zhang XL, Li J, Huang J, Zhang H, Hu SS (2008) Apolipoprotein D as a novel marker in human end-stage heart failure: a preliminary study. Biomarkers 13:535–548. doi:10.1080/13547500802030363

    Article  PubMed  CAS  Google Scholar 

  21. Crowther JR (1995) ELISA: theory and practice. Methods Mol Biol 42:1–223

    PubMed  CAS  Google Scholar 

  22. Jeyaseelan R, Poizat C, Bakeri RK, Abdishoo S, Isterabadi LB, Lyonsi GE, Kedes L (1997) A novel cardiac-restricted target for doxorubicin. J Biol Chem 272:22800–22808

    Article  PubMed  CAS  Google Scholar 

  23. Zhu W, Chen J, Cong X, Hu S, Chen X (2006) Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells 24:416–425. doi:10.1634/stemcells.2005-0121

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National ‘863’ Program (2006AA02Z4B8, Y.J.Wei) and the National Changjiang Scholar and Innovation Group Program (2008, S·S.Hu)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Jie Wei or Sheng-Shou Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 938 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, YJ., Huang, YX., Shen, Y. et al. Proteomic analysis reveals significant elevation of heat shock protein 70 in patients with chronic heart failure due to arrhythmogenic right ventricular cardiomyopathy. Mol Cell Biochem 332, 103–111 (2009). https://doi.org/10.1007/s11010-009-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0179-1

Keywords

Navigation