Skip to main content
Log in

Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes: effect of IGF-I

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Myogenesis is regulated through the proliferation and differentiation of myoblasts expressing myostatin which functions as a negative regulator by generating Smad signals. Here, we monitored the autocrine action of myostatin in quiescent chicken myoblasts transfected with the Smad-mediated promoter reporter vector to evaluate the modulation of several growth factors. During differentiation of myoblasts into myotubes, stretched and spherical types of myoblasts were observed at 12 h after induction, at which the promoter activity began to increase. Maximal promoter activity was observed at approximately 30 h. Multinucleated myotubes were markedly formed at 72 h, but the activity was very low. IGF-I, known as a positive regulator of myogenesis, increased the promoter activity, but the increase was rather small at its high concentration (100 ng/ml). IGF-I significantly increased the level of myostatin transcript in myoblasts and newly formed myotubes at 24 h, but not at 36 h. However, the cell fusion of myoblasts was not accelerated in the presence of IGF-I. Consequently, this study indicates that the autocrine action of myostatin is partially enhanced by IGF-I through increasing its expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387:83–90. doi:10.1038/387083a0

    Article  CAS  PubMed  Google Scholar 

  2. Kambadur R, Sharma M, Smith TPL, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–915

    CAS  PubMed  Google Scholar 

  3. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74. doi:10.1038/ng0997-71

    Article  CAS  PubMed  Google Scholar 

  4. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461. doi:10.1073/pnas.94.23.12457

    Article  CAS  PubMed  Google Scholar 

  5. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420:418–421. doi:10.1038/nature01154

    Article  CAS  PubMed  Google Scholar 

  6. Wagner KR, McPherron AC, Winik N, Lee SJ (2002) Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 52:832–836. doi:10.1002/ana.10385

    Article  CAS  PubMed  Google Scholar 

  7. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O’Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300:965–971. doi:10.1016/S0006-291X(02)02953-4

    Article  CAS  PubMed  Google Scholar 

  8. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688. doi:10.1056/NEJMoa040933

    Article  CAS  PubMed  Google Scholar 

  9. Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E (2001) Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 24:893–899. doi:10.1002/mus.1086

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Nair G, Arver S, Bhasin S (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95:14938–14943. doi:10.1073/pnas.95.25.14938

    Article  CAS  PubMed  Google Scholar 

  11. Ivey FM, Roth SM, Ferrell RE, Tracy BL, Lemmer JT, Hurlbut DE, Martel GF, Siegel EL, Fozard JL, Jeffrey Metter E, Fleg JL, Hurley BF (2000) Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci 55:M641–M648

    CAS  PubMed  Google Scholar 

  12. Rios R, Fernandez-Nocelos S, Carneiro I, Arce VM, Devesa J (2004) Differential response to exogenous and endogenous myostatin in myoblasts suggests that myostatin acts as an autocrine factor in vivo. Endocrinology 145:2795–2803. doi:10.1210/en.2003-1166

    Article  CAS  PubMed  Google Scholar 

  13. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840. doi:10.1074/jbc.M204291200

    Article  CAS  PubMed  Google Scholar 

  14. Zhu X, Topouzis S, Liang LF, Stotish RL (2004) Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26:262–272. doi:10.1016/j.cyto.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  15. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275:40235–40243. doi:10.1074/jbc.M004356200

    Article  CAS  PubMed  Google Scholar 

  16. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311. doi:10.1073/pnas.151270098

    Article  CAS  PubMed  Google Scholar 

  17. Thies RS, Chen T, Davies MV, Tomkinson KN, Pearson AA, Shakey QA, Wolfman NM (2001) GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18:251–259. doi:10.3109/08977190109029114

    Article  CAS  PubMed  Google Scholar 

  18. Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277:40735–40741. doi:10.1074/jbc.M206379200

    Article  CAS  PubMed  Google Scholar 

  19. Shishkin SS, Krokhina TB, Akhunov VS, Makarov AA, Popov VO (2004) Effects of myostatin and growth factors on cultured human cells. Appl Biochem Microbiol 40:547–550. doi:10.1023/B:ABIM.0000046987.85559.ab

    Article  CAS  Google Scholar 

  20. Liu HZ, Li Q, Yang XY, Liu L, Liu L, An XR, Chen YF (2006) Expression of basic fibroblast growth factor results in the decrease of myostatin mRNA in murine C2C12 myoblasts. Acta Biochim Biophys Sin (Shanghai) 38:697–703. doi:10.1111/j.1745-7270.2006.00215.x

    Article  CAS  Google Scholar 

  21. Sato F, Kurokawa M, Yamauchi N, Hattori M-A (2006) Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA. Am J Physiol Cell Physiol 291:C538–C545. doi:10.1152/ajpcell.00543.2005

    Article  CAS  PubMed  Google Scholar 

  22. He P-J, Fujimoto Y, Yamauchi N, Hattori M-A (2006) Real-time monitoring of cAMP response element binding protein signaling in porcine granulosa cells modulated by ovarian factors. Mol Cell Biochem 290:177–184. doi:10.1007/s11010-006-9185-8

    Article  CAS  PubMed  Google Scholar 

  23. Fukuda H, He P-J, Yokota K, Soh T, Yamauchi N, Hattori M-A (2007) Progesterone-dependent and -independent expression of the multidrug resistance type I gene in porcine granulosa cells. Mol Cell Biochem 298:179–186. doi:10.1007/s11010-006-9364-7

    Article  CAS  PubMed  Google Scholar 

  24. Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17

    CAS  PubMed  Google Scholar 

  25. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352. doi:10.1016/0003-2697(80)90165-7

    Article  CAS  PubMed  Google Scholar 

  26. Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH, Kull FC, González-Cadavid N (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 280:E221–E228

    CAS  PubMed  Google Scholar 

  27. Rios R, Carneiro I, Arce VM, Devesa J (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 282:C993–C999

    CAS  PubMed  Google Scholar 

  28. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286:263–275. doi:10.1016/S0014-4827(03)00074-0

    Article  CAS  PubMed  Google Scholar 

  29. Rios R, Carneiro I, Arce V, Devesa J (2001) Myostatin regulates cell survival during C2C12 myogenesis. Biochem Biophys Res Commun 280:561–566. doi:10.1006/bbrc.2000.4159

    Article  CAS  PubMed  Google Scholar 

  30. Durieux A-C, Amirouche A, Banzet S, Koulmann N, Bonnefoy R, Pasdeloup M, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2007) Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology 148:3140–3147. doi:10.1210/en.2006-1500

    Article  CAS  PubMed  Google Scholar 

  31. Hayes VY, Urban RJ, Jiang J, Marcell TJ, Helgeson K, Mauras N (2001) Recombinant human growth hormone and recombinant human insulin-like growth factor I diminish the catabolic effects of hypogonadism in man: metabolic and molecular effects. J Clin Endocrinol Metab 86:2211–2219. doi:10.1210/jc.86.5.2211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Sciences (JSPS; 16380200) (to M.-A. Hattori). F. Sato and S. Aramaki were, respectively, supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists (No. 166796 and No. 09744).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masa-aki Hattori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurokawa, M., Sato, F., Aramaki, S. et al. Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes: effect of IGF-I. Mol Cell Biochem 331, 193–199 (2009). https://doi.org/10.1007/s11010-009-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0158-6

Keywords

Navigation