Skip to main content

Advertisement

Log in

The distribution and intracellular location of Fas and Fas Ligand following gastric carcinogenesis: Fas Ligand expressing gastric carcinoma cells can inhibit local immune response

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous reports indicated that Fas Ligand (FasL) in gastric carcinoma might support tumour cells to evade host immune attack. However, the mechanism induced by the Fas/FasL system has not yet been described on the basis of comparison of normal and malignant tissues in terms of the features of regional location of Fas and FasL. By using immunostaining methods, we studied the distribution and regional location of Fas and FasL in gastric epithelial cells (GECs), gastric carcinoma cells (GCCs), normal gastric stroma-infiltrating lymphoid cells (NGILs) and tumour-infiltrating lymphoid cells (TILs) in 59 tissue specimens of human gastric carcinoma. The expression of Fas within the entire GECs was higher than that in all GCCs (P < 0.0001); however, the expression of Fas in NGILs was lower than that in TILs (P < 0.0001). The expression of FasL showed no significant difference between GECs and GCCs, or between NGILs and TILs. When we analyzed the Fas/FasL expression on cytomembrane (CM) in GECs and GCCs, Fas-in-CM was detected in 79.4% and 33.33% (P < 0.05), compared with 3.03% and 56.67%, respectively, for FasL-in-CM (P < 0.001). Our results suggest that there is indeed a possible mechanism to assist cancer cells to evade host immune attack, and this mechanism depends on the dynamic state of Fas/FasL expression, that is, Fas showed a tendency to be expressed within the cells, whereas FasL showed a tendency to be expressed on the cell membrane following carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett MW, O’Connell J, O’Sullivan GC et al (1998) The Fas counterattack in vivo: apoptotic depletion of tumour-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 160:5669–5675

    CAS  PubMed  Google Scholar 

  2. Hahne M, Rimoldi D, Schröter M et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366. doi:10.1126/science.274.5291.1363

    Article  CAS  PubMed  Google Scholar 

  3. Niehans GA, Brunner T, Frizelle SP et al (1997) Human lung carcinomas express Fas ligand. Cancer Res 57:1007–1012

    CAS  PubMed  Google Scholar 

  4. O’Connell J, Bennett MW, O’Sullivan GC et al (1998) Fas ligand expression in primary colon adenocarcinomas: evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer. J Pathol 186:240–246. doi:10.1002/(SICI)1096-9896(199811)186:3<240::AID-PATH173>3.0.CO;2-L

    Article  PubMed  Google Scholar 

  5. Lee SH, Shin MS, Park WS et al (1999) Immunohistochemical analysis of Fas ligand expression in normal human tissues. APMIS 107:1013–1019

    Article  CAS  PubMed  Google Scholar 

  6. Debatin KM, Krammer PH (1995) Resistance to APO-1 (CD95) induced apoptosis in T-ALL is determined by a BCL-2 independent anti-apoptotic program. Leukemia 9:815–820

    CAS  PubMed  Google Scholar 

  7. Shima Y, Nishimoto N, Ogata A et al (1995) Myeloma cells express Fas antigen/APO-1 (CD95) but only some are sensitive to anti-Fas antibody resulting in apoptosis. Blood 85:757–764

    CAS  PubMed  Google Scholar 

  8. Owen-Schaub LB, Radinsky R, Kruzel E et al (1994) Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res 54:1580–1586

    CAS  PubMed  Google Scholar 

  9. Ohno S, Tachibana M, Shibakita M et al (2000) Prognostic significance of Fas and Fas ligand system-associated apoptosis in gastric cancer. Ann Surg Oncol 7:750–757. doi:10.1007/s10434-000-0750-1

    Article  CAS  PubMed  Google Scholar 

  10. Suda T, Takahashi T, Golstein P et al (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169–1178. doi:10.1016/0092-8674(93)90326-L

    Article  CAS  PubMed  Google Scholar 

  11. Bullani RR, Wehrli P, Viard-Leveugle I et al (2002) Frequent downregulation of Fas (CD95) expression and function in melanoma. Melanoma Res 12:263–270. doi:10.1097/00008390-200206000-00010

    Article  CAS  PubMed  Google Scholar 

  12. Xerri L, Bouabdallah R, Devilard E et al (1998) Sensitivity to Fas-mediated apoptosis is null or weak in B-cell non-Hodgkin’s lymphomas and is moderately increased by CD40 ligation. Br J Cancer 78:225–232

    CAS  PubMed  Google Scholar 

  13. O’Connell J, Bennett MW, O’Sullivan GC et al (1997) The Fas counterattack: a molecular mechanism of tumor immune privilege. Mol Med 3:294–300. doi:10.1007/s008940050040

    Article  PubMed  Google Scholar 

  14. Bennett MW, O’Connell J, O’Sullivan GC et al (1999) Expression of Fas ligand by human gastric adenocarcinomas: a potential mechanism of immune escape in stomach cancer. Gut 44:156–162

    Article  CAS  PubMed  Google Scholar 

  15. Strand S, Hofmann WJ, Hug H et al (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nat Med 2:1361–1366. doi:10.1038/nm1296-1361

    Article  CAS  PubMed  Google Scholar 

  16. Shiraki K, Tsuji N, Shioda T et al (1997) Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA 94:6420–6425. doi:10.1073/pnas.94.12.6420

    Article  CAS  PubMed  Google Scholar 

  17. Leithäuser F, Dhein J, Mechtersheimer G et al (1993) Constitutive and induced expression of APO-1, a new member of the NGF/TNF receptor superfamily, in normal and neoplastic cells. Lab Invest 69:415–429

    PubMed  Google Scholar 

  18. Sasaki Y, Ahmed H, Takeuchi T et al (1998) Immunohistochemical study of Fas, Fas ligand and interleukin-1 beta converting enzyme expression in human prostatic cancer. Br J Urol 81:852–855

    CAS  PubMed  Google Scholar 

  19. Jiang J, Ulbright TM, Zhang S et al (2002) Fas and Fas ligand expression is elevated in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Cancer 95:296–300. doi:10.1002/cncr.10674

    Article  PubMed  Google Scholar 

  20. Gratas C, Tohma Y, Barnas C et al (1998) Up-regulation of Fas (APO-1/CD95) ligand and down-regulation of Fas expression in human esophageal cancer. Cancer Res 58:2057–2062

    CAS  PubMed  Google Scholar 

  21. Müllauer L, Mosberger I, Grusch M et al (2000) Fas ligand is expressed in normal breast epithelial cells and is frequently up-regulated in breast cancer. J Pathol 190:20–30. doi:10.1002/(SICI)1096-9896(200001)190:1<20::AID-PATH497>3.0.CO;2-S

    Article  PubMed  Google Scholar 

  22. Wu XX, Mizutani Y, Kakehi Y et al (2000) Enhancement of Fas-mediated apoptosis in renal cell carcinoma cells by adriamycin. Cancer Res 60:2912–2918

    CAS  PubMed  Google Scholar 

  23. Fulda S, Küfer MU, Meyer E et al (2002) Sensitization for deathreceptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877. doi:10.1038/sj.onc.1204750

    Article  CAS  Google Scholar 

  24. Herrmann T, Grosse-Hovest L, Otz T et al (2008) Construction of optimized bispecific antibodies for selective activation of the death receptor CD95. Cancer Res 68:1221–1227. doi:10.1158/0008-5472.CAN-07-6175

    Article  CAS  PubMed  Google Scholar 

  25. Kavurma MM, Khachigian LM (2003) Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ 10:36–44. doi:10.1038/sj.cdd.4401179

    Article  CAS  PubMed  Google Scholar 

  26. Martinez-Lorenzo MJ, Anel A, Gamen S et al (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163:1274–1281

    CAS  PubMed  Google Scholar 

  27. Sun M, Ames KT, Suzuki I et al (2006) The cytoplasmic domain of Fas ligand costimulates TCR signals. J Immunol 177:1481–1491

    CAS  PubMed  Google Scholar 

  28. Desbarats J, Duke RC, Newell MK (1998) Newly discovered role for Fas ligand in the cell-cycle arrest of CD4+ T cells. Nat Med 4:1377–1382. doi:10.1038/3965

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki I, Fink PJ (1998) Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med 187:123–128. doi:10.1084/jem.187.1.123

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki I, Martin S, Boursalian TE et al (2000) Fas ligand costimulates the in vivo proliferation of CD8+ T cells. J Immunol 165:5537–5543

    CAS  PubMed  Google Scholar 

  31. Müschen M, Warskulat U, Beckmann MW (2000) Defining CD95 as a tumor suppressor gene. J Mol Med 78:312–325. doi:10.1007/s001090000112

    Article  PubMed  Google Scholar 

  32. Suzuki A, Tsutomi Y, Akahane K et al (1998) Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17:931–939. doi:10.1038/sj.onc.1202021

    Article  CAS  PubMed  Google Scholar 

  33. Kroemer G, Martinez C (1994) Pharmacological inhibition of programmed lymphocyte death. Immunol Today 115:235–242. doi:10.1016/0167-5699(94)90249-6

    Article  Google Scholar 

  34. Natoli G, Ianni A, Costanzo A et al (1995) Resistance to fas-mediated apoptosis in human hepatoma cells. Oncogene 11:1157–1164

    CAS  PubMed  Google Scholar 

  35. Martin SJ, Lennon SV, Bonham AM et al (1990) Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol 145:859–867

    Google Scholar 

  36. French LE, Tschopp J (1999) Inhibition of death receptor signaling by FLICE inhibitory protein as a mechanism for immune escape of tumors. J Exp Med 190:891–894. doi:10.1084/jem.190.7.891

    Article  CAS  PubMed  Google Scholar 

  37. Medema JP, de Jong J, van Hall T et al (1999) Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190:1033–1038. doi:10.1084/jem.190.7.1033

    Article  CAS  PubMed  Google Scholar 

  38. Djerbi M, Screpanti V, Catrina AI et al (1999) The inhibitor of death receptor signaling: FLICE-inhibitory protein defines a newclass of tumor progression factors. J Exp Med 190:1025–1032. doi:10.1084/jem.190.7.1025

    Article  CAS  PubMed  Google Scholar 

  39. Tepper CG, Seldin MF (1999) Modulation of caspase-8 and FLICE-inhibitoryprotein expression as a potential mechanism of Epstein-Barr virus tumorigenesis in Burkitt’s lymphoma. Blood 94:1727–1737

    CAS  PubMed  Google Scholar 

  40. Alderson MR, Armitage RJ, Maraskovsky E et al (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178:2231–2235. doi:10.1084/jem.178.6.2231

    Article  CAS  PubMed  Google Scholar 

  41. Hao Z, Hampel B, Yagita H, Rajewsky K (2004) T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J Exp Med 199:1355–1365. doi:10.1084/jem.20032196

    Article  CAS  PubMed  Google Scholar 

  42. D’Elios MM, Appelmelk BJ, Amedei A, Bergman MP, Del Prete G (2004) Gastric autoimmunity: the role of Helicobacter pylori and molecular mimicry. Trends Mol Med 10:316–323. doi:10.1016/j.molmed.2004.06.001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tsutomu Kohda for technical support and are grateful to Prof. J. Patrick Barron of the International Medical Communications Center of Tokyo Medical University for his review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanran Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Ubukata, H., Tabuchi, T. et al. The distribution and intracellular location of Fas and Fas Ligand following gastric carcinogenesis: Fas Ligand expressing gastric carcinoma cells can inhibit local immune response. Mol Cell Biochem 331, 181–186 (2009). https://doi.org/10.1007/s11010-009-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0156-8

Keywords

Navigation