Skip to main content

Advertisement

Log in

Coexpression and characterization of the human large-conductance Ca2+-activated K+ channel α + β1 subunits in HEK293 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eichhorn B, Dobrev D (2007) Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential. Naunyn Schmiedebergs Arch Pharmacol 376:145–155. doi:10.1007/s00210-007-0193-3

    Article  CAS  PubMed  Google Scholar 

  2. Shen KZ, Lagrutta A, Davies NW et al (1994) Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pflugers Arch 426:440–445. doi:10.1007/BF00388308

    Article  CAS  PubMed  Google Scholar 

  3. McManus OB, Helms LM, Pallanck L et al (1995) Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650. doi:10.1016/0896-6273(95)90321-6

    Article  CAS  PubMed  Google Scholar 

  4. Salkoff L, Butler A, Ferreira G et al (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7:921–931. doi:10.1038/nrn1992

    Article  CAS  PubMed  Google Scholar 

  5. Ghatta S, Nimmagadda D, Xu XP et al (2006) Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther 110:103–116. doi:10.1016/j.pharmthera.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Z, Wallner M, Meera P et al (1999) Human and rodent MaxiK channel β-subunit genes: cloning and characterization. Genomics 55:57–67. doi:10.1006/geno.1998.5627

    Article  CAS  PubMed  Google Scholar 

  7. Lu R, Alioua A, Kumar Y et al (2006) MaxiK channel partners: physiological impact. J Physiol 570:65–72. doi:10.1113/jphysiol.2005.098913

    Article  CAS  PubMed  Google Scholar 

  8. Brenner R, Jegla TJ, Wickenden A et al (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461. doi:10.1074/jbc.275.9.6453

    Article  CAS  PubMed  Google Scholar 

  9. Sade H, Muraki K, Ohya S et al (2006) Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am J Physiol Cell Physiol 290:C77–C86. doi:10.1152/ajpcell.00482.2004

    Article  CAS  PubMed  Google Scholar 

  10. Lippiat JD, Standen NB, Harrow ID et al (2003) Properties of BKCa channels formed by bicistronic expression of hSloα and β1–4 subunits in HEK293 cells. J Membr Biol 192:141–148. doi:10.1007/s00232-002-1070-0

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka Y, Meera P, Song M et al (1997) Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes. J Physiol 502:545–557. doi:10.1111/j.1469-7793.1997.545bj.x

    Article  CAS  PubMed  Google Scholar 

  12. Xie MJ, Zhang LF, Ma J et al (2005) Functional alterations in cerebrovascular K+ and Ca2+ channels are comparable between simulated microgravity rat and SHR. Am J Physiol Heart Circ Physiol 289:H1265–H1276. doi:10.1152/ajpheart.00074.2005

    Article  CAS  PubMed  Google Scholar 

  13. Xie MJ, Zhang LF, Ma J et al (2005) Enhanced BKCa single-channel activities in cerebrovascular smooth muscle cells of simulated microgravity rats. Sheng Li Xue Bao 57:439–445

    CAS  PubMed  Google Scholar 

  14. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200. doi:10.1016/j.vascn.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  15. Yu SP, Kerchner GA (1998) Endogenous voltage-gated potassium channels in human embryonic kidney (HEK293) cells. J Neurosci Res 52:612–617. doi:10.1002/(SICI)1097-4547(19980601)52:5<612::AID-JNR13>3.0.CO;2-3

  16. Fukao M, Mason HS, Kenyon JL et al (2001) Regulation of BKCa channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Mol Pharmacol 59:16–23

    CAS  PubMed  Google Scholar 

  17. Burnette JO, White RE (2006) PGI2 opens potassium channels in retinal pericytes by cyclic AMP-stimulated, cross-activation of PKG. Exp Eye Res 83:1359–1365. doi:10.1016/j.exer.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  18. Holland M, Langton PD, Standen NB et al (1996) Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol 117:119–129

    CAS  PubMed  Google Scholar 

  19. Du W, Bautista JF, Yang H et al (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738. doi:10.1038/ng1585

    Article  CAS  PubMed  Google Scholar 

  20. Meredith AL, Thorneloe KS, Werner ME et al (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279:36746–36752. doi:10.1074/jbc.M405621200

    Article  CAS  PubMed  Google Scholar 

  21. Werner ME, Zvara P, Meredith AL et al (2005) Erectile dysfunction in mice lacking the large conductance calcium-activated potassium (BK) channel. J Physiol 567:545–556. doi:10.1113/jphysiol.2005.093823

    Article  CAS  PubMed  Google Scholar 

  22. Sausbier M, Hu H, Arntz C et al (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci USA 101:9474–9478. doi:10.1073/pnas.0401702101

    Article  CAS  PubMed  Google Scholar 

  23. Ruttiger L, Sausbier M, Zimmermann U et al (2004) Deletion of the Ca2+-activated potassium (BK) α-subunit but not the BKβ1-subunit leads to progressive hearing loss. Proc Natl Acad Sci USA 101:12922–12927. doi:10.1073/pnas.0402660101

    Article  PubMed  Google Scholar 

  24. Marijic J, Li Q-X, Song M et al (2001) Decreased expression of voltage- and Ca2+-activated K+ channels in coronary smooth muscle during aging. Circ Res 88:210–215

    CAS  PubMed  Google Scholar 

  25. Nishimaru K, Eghbali M, Lu R et al (2004) Functional and molecular evidence of MaxiK channel beta1 subunit decrease with coronary artery ageing in the rat. J Physiol 559:849–862

    CAS  PubMed  Google Scholar 

  26. Brenner R, Perez GJ, Bonev AD et al (2000) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407:870–876. doi:10.1038/35038011

    Article  CAS  PubMed  Google Scholar 

  27. Ahring PK, Strøbaek D, Christophersen P et al (1997) Stable expression of the human large-conductance Ca2+-activated K+ channel α- and β-subunits in HEK293 cells. FEBS Lett 415:67–70. doi:10.1016/S0014-5793(97)01096-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. J.D. Lippiat (Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, UK) for a gift of the pIRES-hSloα + β1 construct. We also thank Dr. Tao Wang (Department of Immunology, Fourth Military Medical University, China) for advice and providing HEK293 cell line. This study was supported by National Science Found of China (No. 30600215) and Military Health Ministry of China (No. 06Q058).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Liu or Man-Jiang Xie.

Additional information

Jun Li and Chang-Lei Deng contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Deng, CL., Gao, F. et al. Coexpression and characterization of the human large-conductance Ca2+-activated K+ channel α + β1 subunits in HEK293 cells. Mol Cell Biochem 331, 117–126 (2009). https://doi.org/10.1007/s11010-009-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0149-7

Keywords

Navigation