Skip to main content
Log in

Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2009

An Erratum to this article was published on 11 July 2009

Abstract

Chronic exposure to elevated free fatty acids, in particular long chain saturated fatty acids, provokes endoplasmic reticulum (ER) stress and cell death in a number of cell types. The perturbations to the ER that instigate ER stress and activation of the unfolded protein in response to fatty acids in hepatocytes have not been identified. The present study employed H4IIE liver cells and primary rat hepatocytes to examine the hypothesis that saturated fatty acids induce ER stress via effects on ER luminal calcium stores. Exposure of H4IIE liver cells and primary hepatocytes to palmitate and stearate reduced thapsigargin-sensitive calcium stores and increased biochemical markers of ER stress over similar time courses (6 h). These changes preceded cell death, which was only observed at later time points (16 h). Co-incubation with oleate prevented the reduction in calcium stores, induction of ER stress markers and cell death observed in response to palmitate. Inclusion of calcium chelators, BAPTA-AM or EGTA, reduced palmitate- and stearate-mediated enrichment of cytochrome c in post-mitochondrial supernatant fractions and cell death. These data suggest that redistribution of ER luminal calcium contributes to long chain saturated fatty acid-mediated ER stress and cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 79:683–701

    CAS  PubMed  Google Scholar 

  2. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233. doi:10.1101/gad.13.10.1211

    Article  CAS  PubMed  Google Scholar 

  3. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Investig 110:1389–1398

    CAS  PubMed  Google Scholar 

  4. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum-stress mediated diabetes. J Clin Investig 109:525–532

    CAS  PubMed  Google Scholar 

  5. Ozcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun CZ, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science 306:457–461. doi:10.1126/science.1103160

    Article  PubMed  Google Scholar 

  6. Wang D, Wei Y, Pagliassotti MJ (2006) Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147:943–951. doi:10.1210/en.2005-0570

    Article  CAS  PubMed  Google Scholar 

  7. Puri P, Mirshahi F, Cheung O, Natarajan R, Maher JW, Kellum JM, Sanyal AJ (2008) Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 134:568–576. doi:10.1053/j.gastro.2007.10.039

    Article  CAS  PubMed  Google Scholar 

  8. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks J (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Investig 115:1343–1351

    CAS  PubMed  Google Scholar 

  9. Nehra V, Angulo P, Buchman AL, Lindor KD (2001) Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig Dis Sci 46:2347–2352. doi:10.1023/A:1012338828418

    Article  CAS  PubMed  Google Scholar 

  10. Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM (2007) Endoplasmic reticulum stress, hepatocytes CD1d and NKT cell abnormalities in murine fatty livers. Lab Investig 87:927–937. doi:10.1038/labinvest.3700603

    Article  CAS  PubMed  Google Scholar 

  11. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic B-cell apoptosis by different mechanisms: role of nuclear factor-KB and endoplasmic reticulum stress. Endocrinology 145:5087–5096. doi:10.1210/en.2004-0478

    Article  CAS  PubMed  Google Scholar 

  12. Borradaile NM, Han X, Harp JD, Gale SE, Ory DS, Schaffer JE (2006) Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47:2726–2737. doi:10.1194/jlr.M600299-JLR200

    Article  CAS  PubMed  Google Scholar 

  13. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291:E275–E281. doi:10.1152/ajpendo.00644.2005

    Article  CAS  PubMed  Google Scholar 

  14. Ota T, Gayet C, Ginsberg HN (2008) Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J Clin Investig 118:316–332. doi:10.1172/JCI32752

    Article  CAS  PubMed  Google Scholar 

  15. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140. doi:10.1126/science.1128294

    Article  PubMed  Google Scholar 

  16. Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–14895. doi:10.1074/jbc.M010286200

    Article  CAS  PubMed  Google Scholar 

  17. Wei Y, Wang D, Pagliassotti MJ (2007) Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem 303:105–113. doi:10.1007/s11010-007-9461-2

    Article  CAS  PubMed  Google Scholar 

  18. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular calcium stores by specific inhibition of the endoplasmic reticulum calcium ATPase. Proc Natl Acad Sci USA 87:2466–2470. doi:10.1073/pnas.87.7.2466

    Article  CAS  PubMed  Google Scholar 

  19. Berry M, Friend D (1969) High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J Cell Biol 43:506–519. doi:10.1083/jcb.43.3.506

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Wei Y, Schmoll D, Maclean KN, Pagliassotti MJ (2006) Endoplasmic reticulum stress increases glucose-6-phosphatase and glucose cycling in liver cells. Endocrinology 147:350–358. doi:10.1210/en.2005-1014

    Article  CAS  PubMed  Google Scholar 

  21. Muller PY, Janovjak H, Miserez AR, Dobbie Z (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372–1379

    CAS  PubMed  Google Scholar 

  22. Pagliassotti MJ, Kang J, Thresher JS, Sung CK, Bizeau ME (2002) Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am J Physiol Endocrinol Metab 282:E170–E176

    CAS  PubMed  Google Scholar 

  23. Pagliassotti MJ, Wei Y, Wang D (2007) Insulin protects liver cells from saturated fatty acid-induced apoptosis via inhibition of c-Jun NH2 terminal kinase activity. Endocrinology 148:3338–3345. doi:10.1210/en.2006-1710

    Article  CAS  PubMed  Google Scholar 

  24. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287. doi:10.1097/00041433-200306000-00008

    Article  CAS  PubMed  Google Scholar 

  25. Clark JM, Diehl A (2003) Nonalcoholic fatty liver disease: an underrecognized cause of cryptogenic cirrhosis. JAMA 289:3000–3004. doi:10.1001/jama.289.22.3000

    Article  PubMed  Google Scholar 

  26. Moffitt JH, Fielding BA, Evershed R, Berstan R, Currie JM, Clark A (2005) Adverse physicochemical properties of tripalmitin in beta cells lead to morphological changes and lipotoxicity in vitro. Diabetologia 48:1819–1829. doi:10.1007/s00125-005-1861-9

    Article  CAS  PubMed  Google Scholar 

  27. Lai E, Bikopoulos G, Wheeler MB, Rozakis-Adcock M, Volchuk A (2008) Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic B-cells. Am J Physiol Endocrinol Metab 294:E540–E550. doi:10.1152/ajpendo.00478.2007

    Article  CAS  PubMed  Google Scholar 

  28. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A (2006) Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic B-cell apoptosis. Endocrinology 147:3398–3407. doi:10.1210/en.2005-1494

    Article  CAS  PubMed  Google Scholar 

  29. Gwiazda KS, Yang TL, Lin Y, Johnson JD (2009) Effects of palmitate on ER and cytosolic Ca2+ homeostasis in β-cells. Am J Physiol Endocrinol Metab 296:E690–E701. doi:10.1152/ajpendo.90525.2008

    Article  CAS  PubMed  Google Scholar 

  30. Bakan E, Yildirim A, Kurtul N, Polat MF, Dursun H, Cayir K (2006) Effects of type 2 diabetes mellitus on plasma fatty acid composition and cholesterol content of erythrocyte and leukocyte membranes. Acta Diabetol 8:109–113. doi:10.1007/s00592-007-0224-4

    Article  Google Scholar 

  31. Burdakov D, Petersen OH, Verkhratsky A (2005) Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 38:303–310. doi:10.1016/j.ceca.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  32. Gorlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8:1391–1418. doi:10.1089/ars.2006.8.1391

    Article  PubMed  Google Scholar 

  33. Listenberger LJ, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082. doi:10.1073/pnas.0630588100

    Article  CAS  PubMed  Google Scholar 

  34. Malhi H, Bronk SF, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281:12093–12101. doi:10.1074/jbc.M510660200

    Article  CAS  PubMed  Google Scholar 

  35. Barreyro FJ, Kobayashi S, Bronk SF, Werneburg NW, Malhi H, Gores GJ (2007) Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis. J Biol Chem 282:27141–27154. doi:10.1074/jbc.M704391200

    Article  CAS  PubMed  Google Scholar 

  36. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ (2004) Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology 40:185–194. doi:10.1002/hep.20283

    Article  CAS  PubMed  Google Scholar 

  37. Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431. doi:10.1258/000456305774538238

    Article  CAS  PubMed  Google Scholar 

  38. Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F (2006) ER stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281:2693–2700. doi:10.1074/jbc.M509110200

    Article  CAS  PubMed  Google Scholar 

  39. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W (2001) Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 276:38061–38067. doi:10.1074/jbc.M103689200

    Article  CAS  PubMed  Google Scholar 

  40. Unger RH, Orci L (2002) Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 1585:202–212

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants DK47416 and DK072017 from the National Institutes of Health and the Lillian Fountain Smith Foundation Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Pagliassotti.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11010-009-0302-3

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

(A) Caspase-3 activity in H4IIE liver cells or primary hepatocytes incubated for 6 or 16 h in control media (LG), or control media supplemented with thapsigargin (Thap, 450 nM), oleate (O, 250 μM), or palmitate (P, 250 μM). (B) Caspase-3 activity in H4IIE liver cells or primary rat hepatocytes incubated for 16 h in control media (LG), or control media supplemented with palmitate (P, 250 μM) or palmitate (P, 250 μM) + oleate (O, 125 μM). (C) Caspase-3 activity in H4IIE liver cells or primary rat hepatocytes incubated for 16 h in control media (LG), or control media supplemented with oleate (O, 250 μM), linoleate (L, 250 μM), palmitate (P, 250 μM) or stearate (S, 250 μM) in the absence (no additions) or presence of BAPTA-AM (20 μM) or EGTA (1 mM). Data are reported as the mean ± SD for triplicate samples from 4 to 6 independent experiments. *Significantly (P < 0.05) different from LG−. +Significantly (P < 0.05) different from no additions of the same treatment group

Supplemental Fig. 2

(A) Real time PCR analysis of CHOP, GADD34, ATF4 mRNA in H4IIE liver cells and primary hepatocytes following 16 h incubations in control media (LG), or control media supplemented with oleate (O, 250 μM), linoleate (L, 250 μM), palmitate (P, 250 μM) or stearate (S, 250 μM) in the absence (no additions) or presence of BAPTA-AM (20 μM) or EGTA (1 mM). LG with no additions was set to 1. (B) MTT cell viability assay following 16 h incubations. Data are expressed as the mean ± SD for 4–6 independent experiments

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Wang, D., Gentile, C.L. et al. Reduced endoplasmic reticulum luminal calcium links saturated fatty acid-mediated endoplasmic reticulum stress and cell death in liver cells. Mol Cell Biochem 331, 31–40 (2009). https://doi.org/10.1007/s11010-009-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0142-1

Keywords

Navigation