Skip to main content
Log in

Do resident renal mast cells play a role in the pathogenesis of diabetic nephropathy?

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic nephropathy is associated with high morbidity and mortality and the prevalence of this disease is continuously increasing world wide. Though, the major risk factors like hyperglycemia and hypertension play a pivotal role in the pathogenesis of diabetic nephropathy, the etiology of this insidious disorder is not well understood. Mast cells are pluripotent bone marrow derived cells that play a key role in inflammation. Degranulation of mast cells releases various mediators including inflammatory cytokines, endothelins, growth factors, and proteolytic enzymes. Infiltration of mast cells has been noted to occur in renal diseases. In addition, the renal density of mast cells is significantly increased in diabetic patients with nephropathy. It remains unclear whether resident renal mast cells derived mediators play a role in the pathogenesis of diabetic nephropathy. Recent studies suggest the involvement of renal mast cell infiltration and degranulation in diabetic nephropathy. The present review focuses on the role of resident renal mast cells in diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diab 26:77–82. doi:10.2337/diaclin.26.2.77

    Article  Google Scholar 

  2. Wolf G, Ziyadeh FN (1999) Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56:393–405. doi:10.1046/j.1523-1755.1999.00590.x

    Article  PubMed  CAS  Google Scholar 

  3. Wolf G (2000) Cell cycle regulation in diabetic nephropathy. Kidney Int 77:S59–S66. doi:10.1046/j.1523-1755.2000.07710.x

    Article  CAS  Google Scholar 

  4. Wolf G, Ziyadeh FN (2007) Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol 106:26–31. doi:10.1159/000101797

    Article  CAS  Google Scholar 

  5. Jones SE, Kelly DJ, Cox AJ et al (2003) Mast cell infiltration and chemokine expression in progressive renal disease. Kidney Int 64:906–913. doi:10.1046/j.1523-1755.2003.00183.x

    Article  PubMed  CAS  Google Scholar 

  6. Sur R, Cavender D, Malaviya R (2007) Different approaches to study mast cell functions. Int Immunopharmacol 7:555–567. doi:10.1016/j.intimp.2007.01.009

    Article  PubMed  CAS  Google Scholar 

  7. Eddy AA (2001) Mast cells find their way to the kidney. Kidney Int 60:375–377. doi:10.1046/j.1523-1755.2001.00811.x

    Article  PubMed  CAS  Google Scholar 

  8. Roberts IS, Brenchley PE (2000) Mast cells: the forgotten cells of renal fibrosis. J Clin Pathol 53:858–862. doi:10.1136/jcp.53.11.858

    Article  PubMed  CAS  Google Scholar 

  9. Balakumar P, Singh AP, Ganti SS et al (2008) Resident cardiac mast cells: are they the major culprit in the pathogenesis of cardiac hypertrophy? Basic Clin Pharmacol Toxicol 102:5–9

    PubMed  CAS  Google Scholar 

  10. Singh AP, Singh M, Balakumar P (2008) Effect of mast cell stabilizers in hyperhomocysteinemia-induced cardiac hypertrophy in rats. J Cardiovasc Pharmacol 51:596–604. doi:10.1097/FJC.0b013e31817ae60f

    Article  PubMed  CAS  Google Scholar 

  11. Stevens RL, Austen KF (1989) Recent advances in the cellular and molecular biology of mast cells. Immunol Today 10:381–386. doi:10.1016/0167-5699(89)90272-7

    Article  PubMed  CAS  Google Scholar 

  12. Raible DG, Schulman ES, DiMuzio J et al (1992) Mast cell mediators prostaglandin-D2 and histamine activate human eosinophils. J Immunol 148:3536–3542

    PubMed  CAS  Google Scholar 

  13. Silver RB, Reid AC, Mackins CJ et al (2004) Mast cells: a unique source of renin. Proc Natl Acad Sci USA 101:13607–13612. doi:10.1073/pnas.0403208101

    Article  PubMed  CAS  Google Scholar 

  14. Helske S, Syvaranta S, Kupari M et al (2006) Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur Heart J 27:1495–1504. doi:10.1093/eurheartj/ehi706

    Article  PubMed  CAS  Google Scholar 

  15. Okon K, Stachura J (2007) Increased mast cell density in renal interstitium is correlated with relative interstitial volume, serum creatinine and urea especially in diabetic nephropathy but also in primary glomerulonephritis. Pol J Pathol 58:193–197

    PubMed  Google Scholar 

  16. Balakumar P, Chakkarwar VA, Kishan P et al (2009) Vascular endothelial dysfunction: a tug of war in diabetic nephropathy? Biomed Pharmacother 63:171–179. doi:10.1016/j.biopha.2008.08.008

    Article  PubMed  CAS  Google Scholar 

  17. Leehey DJ, Singh AK, Alavi N et al (2000) Role of angiotensin II in diabetic nephropathy. Kidney Int 77:S93–S98. doi:10.1046/j.1523-1755.2000.07715.x

    Article  CAS  Google Scholar 

  18. Hocher B, Schwarz A, Reinbacher D et al (2001) Effects of endothelin receptor antagonists on the progression of diabetic nephropathy. Nephron 87:161–169. doi:10.1159/000045906

    Article  PubMed  CAS  Google Scholar 

  19. Choles HR, Kasinath BS, Gorin Y et al (2002) Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney Int 62:S8–S11. doi:10.1046/j.1523-1755.62.s82.3.x

    Article  Google Scholar 

  20. Forbes JM, Cooper ME, Oldfield MD et al (2003) Role of advanced glycation end products in diabetic nephropathy. J Am Soc Nephrol 14:S254–S258. doi:10.1097/01.ASN.0000077413.41276.17

    Article  PubMed  CAS  Google Scholar 

  21. Hao CM, Breyer MD (2007) Roles of lipid mediators in kidney injury. Semin Nephrol 27:338–351. doi:10.1016/j.semnephrol.2007.02.008

    Article  PubMed  CAS  Google Scholar 

  22. Langham RG, Kelly DJ, Gow RM et al (2008) Increased renal gene transcription of protein kinase C-β in human diabetic nephropathy: relationship to long-term glycaemic control. Diabetologia 51:668–674. doi:10.1007/s00125-008-0927-x

    Article  PubMed  CAS  Google Scholar 

  23. Navarro JF, Mora-Fernandez C (2006) The role of TNF-α in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev 17:441–450. doi:10.1016/j.cytogfr.2006.09.011

    Article  PubMed  CAS  Google Scholar 

  24. Sakai N, Wada T, Furuichi K et al (2005) Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis 45:54–65. doi:10.1053/j.ajkd.2004.08.039

    Article  PubMed  CAS  Google Scholar 

  25. Peng F, Wu D, Gao B et al (2008) RhoA/Rho-Kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 57:1683–1692. doi:10.2337/db07-1149

    Article  PubMed  CAS  Google Scholar 

  26. Szabó C, Biser A, Benko R et al (2006) Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes 55:3004–3012. doi:10.2337/db06-0147

    Article  PubMed  CAS  Google Scholar 

  27. Mezzano S, Aros C, Droguett A et al (2004) NF-kappaB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol Dial Transplant 19:2505–2512. doi:10.1093/ndt/gfh207

    Article  PubMed  CAS  Google Scholar 

  28. Balakumar P, Chakkarwar VA, Kumar V et al (2008) Experimental models for nephropathy. J Renin Angiotensin Aldosterone Syst 9:189–195. doi:10.1177/1470320308098343

    Article  PubMed  CAS  Google Scholar 

  29. Balakumar P, Chakkarwar VA, Singh M (2009) Ameliorative effect of combination of benfotiamine and fenofibrate in diabetes-induced vascular endothelial dysfunction and nephropathy in rats. Mol Cell Biochem 320:149–162. doi:10.1007/s11010-008-9917-z

    Article  PubMed  CAS  Google Scholar 

  30. Balakumar P, Arora MK, Singh M (2009) Emerging role of PPAR ligands in the management of diabetic nephropathy. Pharmacol Res. doi:10.1016/j.phrs.2009.01.010

  31. Crivellato E, Beltrami C, Mallardi F et al (2003) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123:19–21

    Article  PubMed  Google Scholar 

  32. Hiromura K, Kurosawa M, Yano S et al (1998) Tubulointerstitial mast cell infiltration in glomerulonephritis. Am J Kidney Dis 32:593–599. doi:10.1016/S0272-6386(98)70022-8

    Article  PubMed  CAS  Google Scholar 

  33. Prussin C, Metcalfe DD (2003) 4IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 111:S486–S494. doi:10.1067/mai.2003.120

    Article  PubMed  CAS  Google Scholar 

  34. Ruger BM, Hasan Q, Greenhill NS et al (1996) Mast cells and type VIII collagen in human diabetic nephropathy. Diabetologia 39:1215–1222. doi:10.1007/BF02658509

    Article  PubMed  CAS  Google Scholar 

  35. Metcalfe DD, Baram D, Mekori YA (1999) Mast Cells. Physiol Rev 77:1033–1079

    Google Scholar 

  36. Metcalfe DD, Boyce JA (2006) Mast cell biology in evolution. J Allergy Clin Immunol 117:1227–1229. doi:10.1016/j.jaci.2006.03.031

    Article  PubMed  CAS  Google Scholar 

  37. Metcalfe DD (2008) Mast cells and mastocytosis. Blood 112:946–956. doi:10.1182/blood-2007-11-078097

    Article  PubMed  CAS  Google Scholar 

  38. Toth T, Toth-Jakatics R, Jimi S et al (1999) Mast cells in rapidly progressive glomerulonephritis. Am Soc Nephrol 10:1498–1505

    CAS  Google Scholar 

  39. Welker P, Kramer S, Groneberg DA et al (2008) Increased mast cell number in human hypertensive nephropathy. Am J Physiol Renal Physiol 295:F1103–F1109. doi:10.1152/ajprenal.00374.2007

    Article  PubMed  CAS  Google Scholar 

  40. Norrby K (2002) Mast cells and angiogenesis. APMIS 110:355–371. doi:10.1034/j.1600-0463.2002.100501.x

    Article  PubMed  CAS  Google Scholar 

  41. Andersson MK, Enoksson M, Gallwitz M et al (2009) The extended substrate specificity of the human mast cell chymase reveals a serine protease with well-defined substrate recognition profile. Int Immunol 21:95–104. doi:10.1093/intimm/dxn128

    Article  PubMed  CAS  Google Scholar 

  42. Schwartz LB, Metcalfe DD, Miller JS et al (1987) Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis. N Engl J Med 316:1622–1626

    PubMed  CAS  Google Scholar 

  43. Mekori YA, Baram D (2002) Heterotypic adhesion-induced mast cell activation: biologic relevance in the inflammatory context. Mol Immunol 38:1363–1367. doi:10.1016/S0161-5890(02)00089-5

    Article  PubMed  CAS  Google Scholar 

  44. Balakumar P, Arora MK, Ganti SS, et al. (2009) Recent advances in pharmacotherapy for diabetic nephropathy: current perspectives and future directions. Pharmacol Res. doi:10.1016/j.phrs.2009.02.002

  45. Park IS, Kiyomoto H, Abboud SL et al (1997) Expression of transforming growth factor-beta and type IV collagen in early streptozotocin-induced diabetes. Diabetes 46:473–480. doi:10.2337/diabetes.46.3.473

    Article  PubMed  CAS  Google Scholar 

  46. Bollineni JS, Reddi AS (1993) Transforming growth factor-beta 1 enhances glomerular collagen synthesis in diabetic rats. Diabetes 42:1673–1677. doi:10.2337/diabetes.42.11.1673

    Article  PubMed  CAS  Google Scholar 

  47. Sato H, Iwano M, Akai Y et al (1998) Increased excretion of urinary transforming growth factor beta 1 in patients with diabetic nephropathy. Am J Nephrol 18:490–494. doi:10.1159/000013415

    Article  PubMed  CAS  Google Scholar 

  48. Border WA, Noble NA (1997) TGF-beta in kidney fibrosis: a target for gene therapy. Kidney Int 51:1388–1396. doi:10.1038/ki.1997.190

    Article  PubMed  CAS  Google Scholar 

  49. Border WA, Noble NA (1998) Evidence that TGF-beta should be a therapeutic target in diabetic nephropathy. Kidney Int 54:1390–1391. doi:10.1046/j.1523-1755.1998.00127.x

    Article  PubMed  CAS  Google Scholar 

  50. Goldfarb S, Ziyadeh FN (2001) TGF-β: a crucial component of the pathogenesis of diabetic nephropathy. Trans Am Clin Climatol Assoc 112:27–32

    PubMed  CAS  Google Scholar 

  51. Benigni A, Zoja C, Campana M et al (2006) Beneficial effect of TGF-beta antagonism in treating diabetic nephropathy depends on when treatment is started. Nephron Exp Nephrol 104:e158–e168. doi:10.1159/000094967

    Article  PubMed  CAS  Google Scholar 

  52. Russo LM, Re ED, Brown D et al (2007) Evidence for a role of transforming growth factor (TGF)-β1 in the induction of postglomerular albuminuria in diabetic nephropathy: amelioration by soluble TGF-β type II receptor. Diabetes 56:380–388. doi:10.2337/db06-1018

    Article  PubMed  CAS  Google Scholar 

  53. Huang Y, Noble NA, Zhang J et al (2007) Renin-stimulated TGF-β1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72:45–52. doi:10.1038/sj.ki.5002243

    Article  PubMed  CAS  Google Scholar 

  54. Ritz E (2003) Chymase: a potential culprit in diabetic nephropathy? J Am Soc Nephrol 14:1952–1954. doi:10.1097/01.ASN.0000076125.12092.C6

    Article  PubMed  Google Scholar 

  55. Dogrell SA, Wanstall JC (2005) Cardiac chymase: pathophysiological role and therapeutic potential of chymase inhibitors. Can J Physiol Pharmacol 83:123–130. doi:10.1139/y04-136

    Article  Google Scholar 

  56. Koka V, Wang W, Huang XR et al (2006) Advanced glycation end products activate a chymase-dependent angiotensin II—generating pathway in diabetic complications. Circulation 113:1353–1360. doi:10.1161/CIRCULATIONAHA.105.575589

    Article  PubMed  CAS  Google Scholar 

  57. Ishida K, Takai S, Murano M et al (2008) Role of chymase-dependent matrix metalloproteinase-9 activation in mice with dextran sodium sulfate-induced colitis. J Pharmacol Exp Ther 324:422–426. doi:10.1124/jpet.107.131946

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz LB, Yunginger JW, Miller J et al (1989) Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest 83:1551–1555. doi:10.1172/JCI114051

    Article  PubMed  CAS  Google Scholar 

  59. Masuko K, Murata M, Xiang Y (2007) Tryptase enhances release of vascular endothelial growth factor from human osteoarthritic chondrocytes. Clin Exp Rheumatol 25:860–865

    PubMed  CAS  Google Scholar 

  60. Kondo S, Kagami S, Kido H et al (2001) Role of mast cell tryptase in renal interstitial fibrosis. J Am Soc Nephrol 12:1668–1676

    PubMed  CAS  Google Scholar 

  61. Dienum J, Tarnow L, van Gool JM et al (1999) Plasma renin and prorenin and renin gene variation in patients with insulin-dependent diabetes mellitus and nephropathy. Nephrol Dial Transplant 14:1904–1911. doi:10.1093/ndt/14.8.1904

    Article  Google Scholar 

  62. Huang Y, Noble NA, Zhang J et al (2007) Renin-stimulated TGF-β1 expression is regulated by a mitogen-activated protein kinase in mesangial cells. Kidney Int 72:45–52. doi:10.1038/sj.ki.5002243

    Article  PubMed  CAS  Google Scholar 

  63. Kelly DJ, Zhang Y, Moe G et al (2007) Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia 50:2398–2404. doi:10.1007/s00125-007-0795-9

    Article  PubMed  CAS  Google Scholar 

  64. Schwertschlag U, Hackenthal E (1982) Histamine stimulates renin release from the isolated perfused rat kidney. Naunyn Schmiedebergs Arch Pharmacol 319:239–242. doi:10.1007/BF00495872

    Article  PubMed  CAS  Google Scholar 

  65. Balakumar P, Singh M (2006) Anti tumor necrosis factor-α therapy in heart failure: future direction. Basic Clin Pharmacol Toxicol 99:391–397. doi:10.1111/j.1742-7843.2006.pto_508.x

    Article  PubMed  CAS  Google Scholar 

  66. Nakamura T, Fukui M, Ebihara I et al (1993) mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 42:450–456. doi:10.2337/diabetes.42.3.450

    Article  PubMed  CAS  Google Scholar 

  67. Mahmoud RA, el-Ezz SA, Hegazy AS (2004) Increased serum levels of interleukin-18 in patients with diabetic nephropathy. Ital J Biochem 53:73–81

    PubMed  Google Scholar 

  68. Navarro JF, Mora C, Macia M et al (2003) Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus. Am J Kidney Dis 42:53–61. doi:10.1016/S0272-6386(03)00408-6

    Article  PubMed  CAS  Google Scholar 

  69. Dipetrillo K, Coutermarsh B, Gesek FA (2003) Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284:F113–F121

    PubMed  CAS  Google Scholar 

  70. Kalantarinia K, Awad AS, Siragy HM (2003) Urinary and renal interstitial concentrations of TNF-α increase prior to the rise in albuminuria in diabetic rats. Kidney Int 64:1208–1213. doi:10.1046/j.1523-1755.2003.00237.x

    Article  PubMed  CAS  Google Scholar 

  71. Moriwaki Y, Inokuchi T, Yamamoto A et al (2007) Effect of TNF-alpha inhibition on urinary albumin excretion in experimental diabetic rats. Acta Diabetol 44:215–218. doi:10.1007/s00592-007-0007-6

    Article  PubMed  CAS  Google Scholar 

  72. Bissonnette EY, Enciso JA, Befus AD (1995) Inhibition of tumour necrosis factor-alpha (TNF-α) release from mast cells by the anti-inflammatory drugs, sodium cromoglycate and nedocromil sodium. Clin Exp Immunol 102:78–84

    PubMed  CAS  Google Scholar 

  73. Holdworth SR, Summers SA (2008) Role of mast cells in progressive renal diseases. J Am Soc Nephrol 19:2254–2261. doi:10.1681/ASN.2008010015

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We wish to express our gratitude to Shri. Parveen Garg Ji, Honorable Chairman, ISF College of Pharmacy, Moga, Punjab, India for his inspiration and constant support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitchai Balakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakumar, P., Reddy, J. & Singh, M. Do resident renal mast cells play a role in the pathogenesis of diabetic nephropathy?. Mol Cell Biochem 330, 187–192 (2009). https://doi.org/10.1007/s11010-009-0132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0132-3

Keywords

Navigation