Skip to main content
Log in

Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In previous studies, we showed that ganglioside levels (GM3 being the main ganglioside) in human aortic intima isolated from atherosclerotic lesions were 5 times greater compared to intima from non-diseased vascular areas. Recently, we found that GM3 and GM3 synthase levels in differentiated in vitro macrophages were five and ten times higher, respectively, compared to freshly isolated human monocytes. In this article, we report that GM3 synthase mRNA levels were significantly higher in differentiated human monocyte-derived macrophages compared to monocytes and in atherosclerotic aorta compared to normal aorta. The depletion of GM3 synthesis in cultured monocyte-derived macrophages with DL-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, an inhibitor of ganglioside synthesis, delayed the acquisition of CD206 antigen, prevented the loss of CD163 antigen and enhanced anti-inflammatory cytokine (CCL18) secretion. In the current study, we performed purification of CMP-N-acetylneuraminic acid:lactosylceramide α2,3-sialyltransferase (GM3 synthase) from Triton X-100 extract of human blood mononuclear cells by immunoaffinity chromatography on Sepharose coupled with anti-GM3 synthase antibody. Comparison with several glycolipid substrates showed high specificity of the purified enzyme for lactosylceramide. The apparent KM for lactosylceramide and CMP-NeuAc were 101 and 180 μM, respectively. Analysis of the purified enzyme by SDS-PAGE followed by the anti-GM3 synthase antibody probing detected two bands with apparent molecular masses of 60 and 64 kDa. There were no other protein bands as revealed by Coomassie Blue staining. Thus, ganglioside GM3 may be considered as a physiological modulator of macrophage differentiation in human atherosclerotic aorta. The presented data suggest that up-regulation of GM3 levels is an element of monocyte/macrophage differentiation that provides a tool for control of macrophage accumulation in inflammatory loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CMP:

Cytidine 5′-monophosphate

GalCer:

Galactosylceramide

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LacCer:

Lactosylceramide

NeuAc:

N-acetylneuraminic acid

PPPP:

D-threo-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol

References

  1. Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15:805–817. doi:10.1093/glycob/cwi063

    Article  PubMed  CAS  Google Scholar 

  2. Sandhoff K, Kolter T (2003) Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci 358:847–861. doi:10.1098/rstb.2003.1265

    Article  PubMed  CAS  Google Scholar 

  3. Bremer EG, Schlessinger J, Hakomori SJ (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. Biol Chem 261:2434–2440

    CAS  Google Scholar 

  4. Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99:10231–10233. doi:10.1073/pnas.172380699

    Article  PubMed  CAS  Google Scholar 

  5. Nojiri H, Takaku F, Terui Y et al (1986) Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci USA 83:782–786. doi:10.1073/pnas.83.3.782

    Article  PubMed  CAS  Google Scholar 

  6. Momoi T, Shinmoto M, Kasuya J et al (1986) Activation of CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase during the differentiation of HL-60 cells induced by 12-O-tetradecanoylphorbol-13-acetate. J Biol Chem 26:16270–16273

    Google Scholar 

  7. Zheng M, Fang H, Tsuruoka T et al (1993) Regulatory role of GM3 ganglioside in alpha 5 beta 1 integrin receptor for fibronectin-mediated adhesion of FUA169 cells. J Biol Chem 268:2217–2222

    PubMed  CAS  Google Scholar 

  8. Péguet-Navarro J, Sportouch M, Popa I et al (2003) Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494

    PubMed  Google Scholar 

  9. Mukherjee P, Faber AC, Shelton LM et al (2008) Ganglioside GM3 suppresses the pro-angiogenic effects of vascular endothelial growth factor and ganglioside GD1A. J Lipid Res 49:929–938

    Article  PubMed  CAS  Google Scholar 

  10. Choi HJ, Chung TW, Kang SK et al (2006) Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression-transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology 16:573–583

    Article  PubMed  CAS  Google Scholar 

  11. Hakomori S (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Ann Rev Biochem 50:733–764

    Article  PubMed  CAS  Google Scholar 

  12. Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265:18713–18716

    PubMed  CAS  Google Scholar 

  13. Prokazova NV, Dyatlovotskaya EV, Bergelson LD (1988) Sialylated lactosylceramides. Possible inducers of non-specific immunosuppression and atherosclerotic lesions. Eur J Biochem 172:1–6

    Article  PubMed  CAS  Google Scholar 

  14. Yu RK (1994) Development regulation of ganglioside metabolism. Prog Brain Res 101:31–44

    Article  PubMed  CAS  Google Scholar 

  15. Melkerson-Watson LJ, Sweeley CC (1991) Purification to apparent homogeneity by immunoaffinity chromatography and partial characterization of the GM3 ganglioside-forming enzyme, CMP-sialic acid:lactosylceramide alpha 2, 3-sialyltransferase (SAT-1). J Biol Chem 266:4448–4457

    PubMed  CAS  Google Scholar 

  16. Preuss U, Gu X, Gu T, Yu RK (1993) Purification and characterization of CMP-N-acetylneuraminic acid: lactosylceramide (alpha 2-3) sialyltransferase (GM3-synthase) from rat brain. J Biol Chem 268:26273–26278

    PubMed  CAS  Google Scholar 

  17. Saito M (1989) Bioactive sialoglycosphingolipids (gangliosides): potent differentiation-inducers for human myelogenous leukemia cells. Develop Growth Differ 31:509–522

    Article  CAS  Google Scholar 

  18. Golovanova NK, Samovilova NN, Gracheva EV et al (2004) Development of antibody to human GM3 synthase and immunodetection of the enzymein human tissues. Biochemistry (Moscow) 69:275–280

    Article  CAS  Google Scholar 

  19. Gracheva EV, Samovilova NN, Golovanova NK et al (2007) Activation of ganglioside GM3 biosynthesis in human monocyte/macrophages during culturing in vitro. Biochemistry (Moscow) 72:772–777

    Article  CAS  Google Scholar 

  20. Bobryshev YV, Lord RS, Golovanova NK et al (1997) Incorporation and localisation of ganglioside GM3 in human intimal atherosclerotic lesions. Biochim Biophys Acta 1361:287–294

    PubMed  CAS  Google Scholar 

  21. Kim KW, Kim SW, Min KS et al (2001) Genomic structure of human GM3 synthase gene (hST3Gal V) and identification of mRNA isoforms in the 5′-untranslated region. Gene 273:163–171

    Article  PubMed  CAS  Google Scholar 

  22. Ishii A, Ohta M, Watanabe Y et al (1998) Expression cloning and functional characterization of human cDNA for ganglioside GM3 synthase. J Biol Chem 273:31652–31655

    Article  PubMed  CAS  Google Scholar 

  23. Kono M, Takashima S, Liu H et al (1998) Molecular cloning and functional expression of a fifth-type alpha 2, 3-sialyltransferase (mST3Gal V: GM3 synthase). Biochem Biophys Res Commun 253:170–175

    Article  PubMed  CAS  Google Scholar 

  24. Kapitonov D, Bieberich E, Yu RK (1999) Combinatorial PCR approach to homology-based cloning: cloning and expression of mouse and human GM3-synthase. Glycoconj J 16:337–350

    Article  PubMed  CAS  Google Scholar 

  25. Bobryshev YV, Golovanova NK, Tran D et al (2006) Expression of GM3 synthase in human atherosclerotic lesions. Atherosclerosis 184:63–71

    Article  PubMed  CAS  Google Scholar 

  26. Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S (2005) Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol 61:10–17

    Article  PubMed  CAS  Google Scholar 

  27. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analyt Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  28. Gracheva EV, Samovilova NN, Golovanova NK et al (2002) Sialyltransferase activity of human plasma and aortic intima is enhanced in atherosclerosis. Biochim Biophys Acta 1586:123–128

    PubMed  CAS  Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  30. Li R, Manela J, Kong Y, Ladisch S (2000) Cellular gangliosides promote growth factor-induced proliferation of fibroblasts. J Biol Chem 275:34213–34223

    Article  PubMed  CAS  Google Scholar 

  31. Chung TW, Choi HJ, Lee YC, Kim CH (2005) Molecular mechanism for transcriptional activation of ganglioside GM3 synthase and its function in differentiation of HL-60 cells. Glycobiology 15:233–244

    Article  PubMed  CAS  Google Scholar 

  32. Auwerx J (1991) The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia 47:22–31

    Article  PubMed  CAS  Google Scholar 

  33. Hakomori S (2004) Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis ofcell recognition and membrane organization. Glycoconj J 21:125–137

    Article  PubMed  CAS  Google Scholar 

  34. Sturge J, Todd SK, Kogianni G et al (2007) Mannose receptor regulation of macrophage cell migration. J Leukoc Biol 82:585–593

    Article  PubMed  CAS  Google Scholar 

  35. Buechler C, Ritter M, Orsó E et al (2000) Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. Leukoc Biol 67:97–103

    CAS  Google Scholar 

  36. Berselli P, Zava S, Sottocornola E et al (2006) Human GM3 synthase: a new mRNA variant encodes an NH2-terminal extended form of the protein. Biochim Biophys Acta 1759:348–358

    PubMed  CAS  Google Scholar 

  37. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Russian Foundation for Basic Research Grant (06-04-48277-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina V. Prokazova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gracheva, E.V., Samovilova, N.N., Golovanova, N.K. et al. Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol Cell Biochem 330, 121–129 (2009). https://doi.org/10.1007/s11010-009-0125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0125-2

Keywords

Navigation