Skip to main content
Log in

Potential contributions of antimutator activity to the metastasis suppressor function of NM23-H1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

nm23-h1 is a well-documented metastasis suppressor gene whose mechanism(s) of action have yet to be fully elucidated. The purpose of this report is to discuss recent advances in investigating the potential role of a novel 3′–5′ exonuclease activity identified recently in our laboratory, a biochemical function associated, in general, with DNA repair and replication. We have employed a site-directed mutagenesis approach to demonstrate that the 3′–5′ exonuclease activity of NM23-H1 is required for its metastasis suppressor function. Consistent with a role in DNA repair, we also observe that the single yeast NM23 homolog (YNK1) is required for the maintenance of genomic integrity and normal kinetics of DNA repair in response to exposure to ultraviolet radiation. These results and their implications for understanding the molecular mechanisms underlying NM23-H1 functions in cancer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Steeg PS, Bevilacqua G, Kopper L, Thorgerisson UR, Talmadge JE, Liotta LA, Sobel M (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80:200–205. doi:10.1093/jnci/80.3.200

    Article  PubMed  CAS  Google Scholar 

  2. MacDonald NJ, Freije JM, Stracke ML, Manrow RE, Steeg PS (1996) Site-directed mutagenesis of nm23-H1. Mutation of proline 96 or serine 120 abrogates its motility inhibitory activity upon transfection into human breast carcinoma cells. J Biol Chem 271:25107–25116. doi:10.1074/jbc.271.41.25107

    Article  PubMed  CAS  Google Scholar 

  3. Wagner PD, Steeg PS, Vu ND (1997) Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci USA 94:9000–9005. doi:10.1073/pnas.94.17.9000

    Article  PubMed  CAS  Google Scholar 

  4. MacDonald NJ, De La Rosa A, Benedict MA, Freije JM, Krutsch H, Steeg PS (1993) A serine phosphorylation of Nm23, and not its nucleoside diphosphate kinase activity, correlates with suppression of tumor metastatic potential. J Biol Chem 268:25780–25789

    PubMed  CAS  Google Scholar 

  5. Shevelev IV, Hübscher U (2002) The 3′–5′ exonucleases. Nat Rev Mol Cell Biol 3:1–12. doi:10.1038/nrm804

    Article  Google Scholar 

  6. Cifone MA, Fidler IJ (1981) Increasing metastatic potential is associated with increasing genetic instability of clones isolated from murine neoplasms. Proc Natl Acad Sci USA 78:6949–6952. doi:10.1073/pnas.78.11.6949

    Article  PubMed  CAS  Google Scholar 

  7. Kaetzel DM, Zhang Q, Yang M, McCorkle JR, Ma D, Craven RJ (2006) Potential roles of 3′–5′ exonuclease activity of NM23-H1 in DNA repair and malignant progression. J Bioenerg Biomembr 38:163–167

    Google Scholar 

  8. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757. doi:10.1016/S0140-6736(07)60781-8

    Article  PubMed  CAS  Google Scholar 

  9. Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23-H1 possesses 3′–5′ exonuclease activity. J Biol Chem 279:18073–18084. doi:10.1074/jbc.M400185200

    Article  PubMed  CAS  Google Scholar 

  10. Freije JM, Blay P, MacDonald NJ, Manrow RE, Steeg PS (1997) Site-directed mutation of Nm23-H1. Mutations lacking motility suppressive capacity upon transfection are deficient in histidine-dependent protein phosphotransferase pathways in vitro. J Biol Chem 272:5525–5532. doi:10.1074/jbc.272.9.5525

    Article  PubMed  CAS  Google Scholar 

  11. Yoon JH, Singh P, Lee DH, Qiu J, Cai S, O’Connor TR, Chen Y, Shen B, Pfeifer GP (2005) Characterization of the 3′–5′ exonuclease activity found in human nucleoside diphosphate kinase 1 (NDK1) and several of its homologues. Biochemistry 44:15774–15786. doi:10.1021/bi0515974

    Article  PubMed  CAS  Google Scholar 

  12. Kath R, Jambrosic JA, Holland L, Rodeck U, Herlyn M (1991) Development of invasive and growth factor-independent cell variants from primary human melanomas. Cancer Res 51:2205–2211

    PubMed  CAS  Google Scholar 

  13. Rusciano D, Welch DR, Burger MM (2000) In vivo cancer metastasis assays. In: van der Vliet PC, Pillai S (Eds) Cancer metastasis: experimental approaches. Elsevier, Amsterdam, pp 208–242

    Google Scholar 

  14. Leone A, Flatow U, King CR, Sandeen MA, Margulies IMK, Liotta LA, Steeg PS (1991) Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell 65:25–35. doi:10.1016/0092-8674(91)90404-M

    Article  PubMed  CAS  Google Scholar 

  15. Chadwick DE, Lagarde AE (1988) Coincidental acquisition of growth autonomy and metastatic potential during the malignant transformation of factor-dependent CCL39 lung fibroblasts. J Natl Cancer Inst 80:318–325. doi:10.1093/jnci/80.5.318

    Article  PubMed  CAS  Google Scholar 

  16. Yang M, Jarrett SG, Craven R, Kaetzel DM (2009) YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res 660:74–78

    PubMed  CAS  Google Scholar 

  17. Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12:2987–3003

    PubMed  CAS  Google Scholar 

  18. Grunstein M (1990) Histone function in transcription. Annu Rev Cell Biol 6:643–678. doi:10.1146/annurev.cb.06.110190.003235

    Article  PubMed  CAS  Google Scholar 

  19. Ayala-Torres S, Chen Y, Svoboda T, Rosenblatt J, Van Houten B (2000) Analysis of gene-specific DNA damage and repair using quantitative polymerase chain reaction. Methods 22:135–147. doi:10.1006/meth.2000.1054

    Article  PubMed  CAS  Google Scholar 

  20. Scheel C, Onder T, Karnoub A, Weinberg RA (2007) Adaptation versus selection: the origins of metastatic behavior. Cancer Res 67:11476–11479. doi:10.1158/0008-5472.CAN-07-1653

    Article  PubMed  CAS  Google Scholar 

  21. Talmadge JE (2007) Clonal selection of metastasis within the life history of a tumor. Cancer Res 67:11471–11475. doi:10.1158/0008-5472.CAN-07-2496

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kaetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaetzel, D.M., McCorkle, J.R., Novak, M. et al. Potential contributions of antimutator activity to the metastasis suppressor function of NM23-H1. Mol Cell Biochem 329, 161–165 (2009). https://doi.org/10.1007/s11010-009-0108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0108-3

Keywords

Navigation