Skip to main content

Hen lysozyme amyloid fibrils induce aggregation of erythrocytes and lipid vesicles

Abstract

We have studied the interaction of hen egg white lysozyme (HEWL) amyloid fibrils with human erythrocytes and lipid vesicles. The fibrils caused extensive aggregation of human erythrocytes and lipid vesicles without any significant lysis. The membrane activity of HEWL fibrils suggests that the interaction of lysozyme fibrils with cellular membranes could be a contributing factor under disease conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Dumoulin M, Kumita JR, Dobson CM (2006) Normal and aberrant biological self-assembly: insights from studies of human lysozyme and its amyloidogenic variants. Acc Chem Res 39:603–610. doi:10.1021/ar050070g

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, Feest TG, Zalin AM, Hsuan JJ (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362:553–557. doi:10.1038/362553a0

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CC, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793. doi:10.1038/385787a0

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Morozova-Roche LA, Zurdo J, Spencer A, Noppe W, Receveur V, Archer DB, Joniau M, Dobson CM (2000) Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J Struct Biol 130:339–351. doi:10.1006/jsbi.2000.4264

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Krebs MR, Wilkins DK, Chung EW, Pitkeathly MC, Chamberlain AK, Zurdo J, Robinson CV, Dobson CM (2000) Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the beta-domain. J Mol Biol 300:541–549. doi:10.1006/jmbi.2000.3862

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Goda S, Takano K, Yamagata Y, Nagata R, Akutsu H, Maki S, Namba K, Yutani K (2000) Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Sci 9:369–375

    PubMed  CAS  Google Scholar 

  7. 7.

    Arnaudov LN, de Vries R (2005) Thermally induced fibrillar aggregation of hen egg white lysozyme. Biophys J 88:515–526. doi:10.1529/biophysj.104.048819

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Fujiwara S, Matsumoto F, Yonezawa Y (2003) Effects of salt concentration on association of the amyloid protofilaments of hen egg white lysozyme studied by time-resolved neutron scattering. J Mol Biol 331:21–28. doi:10.1016/S0022-2836(03)00722-8

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Vernaglia BA, Huang J, Clark ED (2004) Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules 5:1362–1370. doi:10.1021/bm0498979

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Frare E, Polverino De Laureto P, Zurdo J, Dobson CM, Fontana A (2004) A highly amyloidogenic region of hen lysozyme. J Mol Biol 340:1153–1165. doi:10.1016/j.jmb.2004.05.056

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Cao A, Hu D, Lai L (2004) Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci 13:319–324. doi:10.1110/ps.03183404

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Zhao H, Tuominen EK, Kinnunen PK (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43:10302–10307. doi:10.1021/bi049002c

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Gellermann GP, Appel TR, Tannert A, Radestock A, Hortschansky P, Schroeckh V, Leisner C, Lutkepohl T, Shtrasburg S, Rocken C, Pras M, Linke RP, Diekmann S, Fandrich M (2005) Raft lipids as common components of human extracellular amyloid fibrils. Proc Natl Acad Sci USA 102:6297–6302. doi:10.1073/pnas.0407035102

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Yip CM, McLaurin J (2001) Amyloid-beta peptide assembly: a critical step in fibrillogenesis and membrane disruption. Biophys J 80:1359–1371. doi:10.1016/S0006-3495(01)76109-7

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39:10309–10318. doi:10.1021/bi0001980

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Singer SJ, Dewji NN (2006) Evidence that Perutz’s double-beta-stranded subunit structure for beta-amyloids also applies to their channel-forming structures in membranes. Proc Natl Acad Sci USA 103:1546–1550. doi:10.1073/pnas.0509892103

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Curtain CC, Ali FE, Smith DG, Bush AI, Masters CL, Barnham KJ (2003) Metal ions, pH, and cholesterol regulate the interactions of Alzheimer’s disease amyloid-beta peptide with membrane lipid. J Biol Chem 278:2977–2982. doi:10.1074/jbc.M205455200

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444. doi:10.1096/fj.01-0377com

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci USA 90:10573–10577. doi:10.1073/pnas.90.22.10573

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279:46363–46366. doi:10.1074/jbc.C400260200

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Engel MF, Yigittop H, Elgersma RC, Rijkers DT, Liskamp RM, de Kruijff B, Hoppener JW, Antoinette Killian J (2006) Islet amyloid polypeptide inserts into phospholipid monolayers as monomer. J Mol Biol 356:783–789. doi:10.1016/j.jmb.2005.12.020

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Lau TL, Ambroggio EE, Tew DJ, Cappai R, Masters CL, Fidelio GD, Barnham KJ, Separovic F (2006) Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 356:759–770. doi:10.1016/j.jmb.2005.11.091

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, Fidelio GD (2005) Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1–42: a membrane-disrupting peptide. Biophys J 88:2706–2713. doi:10.1529/biophysj.104.055582

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Malisauskas M, Darinskas A, Zamotin VV, Gharibyan A, Kostanyan IA, Morozova-Roche LA (2006) Intermediate amyloid oligomers of lysozyme: is their cytotoxicity a particular case or general rule for amyloid? Biochemistry (Mosc) 71:505–512. doi:10.1134/S0006297906050063

    Article  CAS  Google Scholar 

  25. 25.

    Zamotin V, Gharibyan A, Gibanova NV, Lavrikova MA, Dolgikh DA, Kirpichnikov MP, Kostanyan IA, Morozova-Roche LA (2006) Cytotoxicity of albebetin oligomers depends on cross-beta-sheet formation. FEBS Lett 580:2451–2457. doi:10.1016/j.febslet.2006.03.074

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidoses: Transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101:2817–2822. doi:10.1073/pnas.0400062101

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Andersson K, Olofsson A, Nielsen EH, Svehag SE, Lundgren E (2002) Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 294:309–314. doi:10.1016/S0006-291X(02)00465-5

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40:7812–7819. doi:10.1021/bi0102398

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41:10209–10217. doi:10.1021/bi020139h

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Anderluh G, Gutierrez-Aguirre I, Rabzelj S, Ceru S, Kopitar-Jerala N, Macek P, Turk V, Zerovnik E (2005) Interaction of human stefin B in the prefibrillar oligomeric form with membranes. Correlation with cellular toxicity. FEBS J 272:3042–3051. doi:10.1111/j.1742-4658.2005.04717.x

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Sparr E, Engel MF, Sakharov DV, Sprong M, Jacobs J, de Kruijff B, Hoppener JW, Killian JA (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120. doi:10.1016/j.febslet.2004.09.075

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Gharibyan AL, Zamotin V, Yanamandra K, Moskaleva OS, Margulis BA, Kostanyan IA, Morozova-Roche LA (2007) Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. J Mol Biol 365:1337–1349. doi:10.1016/j.jmb.2006.10.101

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Edelhoch H, Steiner RF (1962) Structural transitions of lysozyme in urea solution. Biochim Biophys Acta 60:365–372. doi:10.1016/0006-3002(62)90412-2

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T. Anal Biochem 177:244–249. doi:10.1016/0003-2697(89)90046-8

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Ishitsuka R, Yamaji-Hasegawa A, Makino A, Hirabayashi Y, Kobayashi T (2004) A lipid-specific toxin reveals heterogeneity of sphingomyelin-containing membranes. Biophys J 86:296–307. doi:10.1016/S0006-3495(04)74105-3

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303. doi:10.1016/0005-2736(91)90295-J

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Venyaminov YS, Yang JT (1996) Determination of protein secondary structure. In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum, New York, pp 69–108

    Google Scholar 

  38. 38.

    Zschornig O, Paasche G, Thieme C, Korb N, Fahrwald A, Arnold K (2000) Association of lysozyme with phospholipid vesicles is accompanied by membrane surface dehydration. Gen Physiol Biophys 19:85–101

    PubMed  CAS  Google Scholar 

  39. 39.

    Zschornig O, Paasche G, Thieme C, Korb N, Arnold K (2005) Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf B Biointerfaces 42:69–78. doi:10.1016/j.colsurfb.2005.01.008

    PubMed  Article  Google Scholar 

  40. 40.

    Posse E, Lopez Vinals A, de Arcuri BF, Farias RN, Morero RD (1990) Lysozyme induced fusion of negatively charged phospholipid vesicles. Biochim Biophys Acta 1024:390–394. doi:10.1016/0005-2736(90)90370-4

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Arnold K, Hoekstra D, Ohki S (1992) Association of lysozyme to phospholipid surfaces and vesicle fusion. Biochim Biophys Acta 1124:88–94

    PubMed  CAS  Google Scholar 

  42. 42.

    Posse E, De Arcuri BF, Morero RD (1994) Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. Biochim Biophys Acta 1193:101–106. doi:10.1016/0005-2736(94)90338-7

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Bergers JJ, Vingerhoeds MH, van Bloois L, Herron JN, Janssen LH, Fischer MJ, Crommelin DJ (1993) The role of protein charge in protein–lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of water-soluble, globular proteins. Biochemistry 32:4641–4649. doi:10.1021/bi00068a023

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Gorbenko GP, Ioffe VM, Kinnunen PK (2007) Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys J 93:140–153. doi:10.1529/biophysj.106.102749

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Shashi Singh, Centre for Cellular and Molecular Biology, Hyderabad, for help in recording AFM images of HEWL fibrils.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Nagaraj.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaudhary, N., Nagaraj, R. Hen lysozyme amyloid fibrils induce aggregation of erythrocytes and lipid vesicles. Mol Cell Biochem 328, 209–215 (2009). https://doi.org/10.1007/s11010-009-0091-8

Download citation

Keywords

  • Lysozyme fibrils
  • Membrane interaction
  • Erythrocytes
  • Lipid vesicles