Skip to main content
Log in

Glycolysis activity in flight muscles of birds according to their physiological function. An experimental model in vitro to study aerobic and anaerobic glycolysis activity separately

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An experimental system in vitro is presented to assess the activity of the entire glycolysis in tissue extracts, which allows determining aerobic and anaerobic glycolysis activities separately. Glycolysis activity has been measured in pectoral and supracoracoideus muscles of the homing pigeon and the domestic fowl. These muscles support different aspects of flight in the two birds and are representative models of the two kinds of basic movements, endurance and sprint. The results obtained showed that in type I red fibers (pigeon pectoral), glucose produced a high glycolytic activity, while it was a poor substrate for type IIb white fibers (fowl pectoral and the two supracoracoideus). White fibers, however, attained its maximum glycolytic activity with phosphorylated glucose as substrate. These results demonstrated the validity of the experimental system as a method for assaying the two kinds of glycolytic activity in tissues, and supply new information about the biochemical and physiological features of these types of fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chance B, Im J, Nioka S, Kushmerick M (2006) Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR Biomed 19:904–926. doi:10.1002/nbm.1109

    Article  PubMed  Google Scholar 

  2. Needham DM (1971) Machina carnis. Cambridge University Press, Cambridge, U.K

    Google Scholar 

  3. Peters S (1989) Structure and function in vertebrate skeletal muscle. Am Zool 29:221–234

    Google Scholar 

  4. Roberts T, Weber J-M, Hoppeler H, Weibel E, Taylor E (1996) Design of the oxygen and substrate pathways II. Defining the upper limits of carbohydrate and fat oxidation. J Exp Biol 199:1651–1658

    PubMed  CAS  Google Scholar 

  5. Conley KE, Kushmerick MJ, Jubrias SA (1998) Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo. J Physiol 511:935–945. doi:10.1111/j.1469-7793.1998.935bg.x

    Article  PubMed  CAS  Google Scholar 

  6. Newsholme EA, Start C (1981) Regulation in metabolism. Wiley, Chichester, UK

    Google Scholar 

  7. Vock R, Hoppeler H, Claassen H, Wu DXY, Billeter R, Weber J-M, Taylor CR, Weibel ER (1996) Design of the oxygen and substrate pathways. VI. Structural basis of intracellular substrate supply to mitochondria in muscle cells. J Exp Biol 199:1689–1697

    PubMed  CAS  Google Scholar 

  8. Alberti KG (1977) The biochemical consequences of hypoxia. J Clin Pathol Suppl (R Coll Pathol) 11:14–20

    CAS  Google Scholar 

  9. Coggan AR (1991) Plasma glucose metabolism during exercise in humans. Sports Med 11:102–124. doi:10.2165/00007256-199111020-00003

    Article  PubMed  CAS  Google Scholar 

  10. Holloszy JO, Kohrt WM, Hansen PA (1998) The regulation of carbohydrate and fat metabolism during and after exercise. Front Biosci 3:D1011–D1027

    PubMed  CAS  Google Scholar 

  11. Crabtree B, Newsholme E (1972) The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenases in muscles from vertebrates and invertebrates. Biochem J 126:49–58

    PubMed  CAS  Google Scholar 

  12. Jackman M, Willis W (1996) Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270:C673–C678

    PubMed  CAS  Google Scholar 

  13. Gollnick P, Hodgson D (1986) The identification of fiber types in skeletal muscle: a continual dilemma. Exerc Sport Sci Rev 14:81–104. doi:10.1249/00003677-198600140-00006

    Article  PubMed  CAS  Google Scholar 

  14. James N (1968) Histochemical demonstration of myoglobin in skeletal muscle fibres and muscle spindles. Nature 219:1174–1175. doi:10.1038/2191174a0

    Article  PubMed  CAS  Google Scholar 

  15. Hochachka P (1991) Design of energy metabolism. In: Prosser C (ed) Comparative animal physiology: environmental and metabolic animal physiology. Wiley-Liss, New York, pp 325–351

    Google Scholar 

  16. Rome L (1998) Some advances in integrative muscle physiology. Comp Biochem Physiol 120B:51–72

    CAS  Google Scholar 

  17. Rome L (2002) The design of vertebrate muscular systems: comparative and integrative approaches. Clin Orthop Relat Res 403(Suppl):S59–S76. doi:10.1097/00003086-200210001-00008

    Article  PubMed  Google Scholar 

  18. Meléndez-Hevia E, Siverio J, Pérez J (1984) Studies on glycolysis in vitro: role of glucose phosphorylation and phosphofructokinase activity on total velocity. Int J Biochem 16:469–476. doi:10.1016/0020-711X(84)90162-9

    Article  PubMed  Google Scholar 

  19. Torres N, Mateo F, Meléndez-Hevia E, Kacser H (1986) Kinetics of metabolic pathways. A system in vitro to study the control of flux. Biochem J 234:169–174

    PubMed  CAS  Google Scholar 

  20. Torres N, Meléndez-Hevia E (1991) Detailed protocol and critical view for the analysis of control in metabolic systems by shortening and enzyme titration. Mol Cell Biochem 101:1–10. doi:10.1007/BF00238432

    Article  PubMed  CAS  Google Scholar 

  21. Delgado J, Meruana J, Liao JC (1993) Experimental determination of flux control distribution in biochemical systems: in vitro model to analyze transient metabolite concentrations. Biotechnol Bioeng 41:1121–1128. doi:10.1002/bit.260411116

    Article  PubMed  CAS  Google Scholar 

  22. L’Her E, Sébert P (2000) Glycolysis in the human muscle: a new approach. J Lab Clin Med 136:281–286. doi:10.1067/mlc.2000.109317

    Article  PubMed  Google Scholar 

  23. Puigjaner J, Rais B, Burgos M, Comin B, Ovádi J, Cascante M (1997) Comparison of control analysis data using different approaches: modelling and experiments with muscle extract. FEBS Lett 418:47–52. doi:10.1016/S0014-5793(97)01347-1

    Article  PubMed  CAS  Google Scholar 

  24. Sébert P, Peragón J, Barroso JB, Simon B, Meléndez-Hevia E (1998) High hydrostatic pressure (101 ATA) changes the metabolic design of yellow freshwater eels. Comp Biochem Physiol 121B:195–200

    Google Scholar 

  25. Sola MM, Salto R, Oliver FJ, Gutiérrez M, Vargas AM (1993) Effects of AMP and fructorse 2,6-bis-phosphate on fluxes between glucose 6-phosphate and triose-phosphate in renal cortical extract. J Biol Chem 268:19352–19357

    PubMed  CAS  Google Scholar 

  26. Torres NV, Mateo F, Meléndez-Hevia E (1988) Shift in rat liver glycolysis control from fed to starved conditions: flux control coefficients of glucokinase and phosphofructokinase. FEBS Lett 233:83–86. doi:10.1016/0014-5793(88)81360-7

    Article  PubMed  CAS  Google Scholar 

  27. Torres NV, Souto R, Meléndez-Hevia E (1989) Study of the flux and transition time control coefficient profiles in a metabolic system in vitro, and the effect of an external stimulator. Biochem J 260:763–769

    PubMed  CAS  Google Scholar 

  28. Dial K, Kaplan S, Goslow G, Jenkins F (1987) Structure and neural control of the Pectoralis in pigeons: implications for flight mechanics. Anat Rec 218:284–287. doi:10.1002/ar.1092180309

    Article  PubMed  CAS  Google Scholar 

  29. Mathieu-Costello O, Agey P, Quintana E, Rousey K, Wu L, Bernstein M (1998) Fiber capillarization and ultrastructure of pigeon pectoralis muscle after cold acclimation. J Exp Biol 201:3211–3220

    PubMed  CAS  Google Scholar 

  30. MacNaughtan A (1974) An ultrastructural and histochemical study of fibre types in the pectoralis thoracica and iliotibialis muscles of the fowl (Gallus domesticus). J Anat 118:171–186

    PubMed  CAS  Google Scholar 

  31. Dial K, Kaplan S, Goslow G, Jenkins F (1988) A functional analysis of the primary upstroke and downstroke muscles in the domestic pigeon (Columba livia) during flight. J Exp Biol 134:1–16

    PubMed  CAS  Google Scholar 

  32. Poore S, Ashcroft A, Sánchez-Haiman A, Goslow G (1997) The contractile properties of the M. Supracoracoideus in the pigeon and starling: a case for long-axis rotation of the humerus. J Exp Biol 200:2987–3002

    PubMed  Google Scholar 

  33. Lupiáñez J, García-Salguero L, Torres N, Peragón J, Meléndez-Hevia E (1996) Metabolic support of the flight promptness of birds. Comp Biochem Physiol 113B:439–443

    Google Scholar 

  34. Meléndez-Hevia E, Waddell TG, Heinrich R, Montero F (1997) Theoretical approaches to the evolutionary optimization of glycolysis. Chemical analysis. Eur J Biochem 244:527–543. doi:10.1111/j.1432-1033.1997.t01-1-00527.x

    Article  PubMed  Google Scholar 

  35. Berger M, Hagg S, Ruderman N (1975) Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem J 146:231–238

    PubMed  CAS  Google Scholar 

  36. Aragón JJ, Tornheim K, Lowenstein JM (1980) On a possible role of IMP in the regulation of phosphorylase activity in skeletal muscle. FEBS Lett 117(Suppl):K56–K64. doi:10.1016/0014-5793(80)80570-9

    Article  PubMed  Google Scholar 

  37. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 7:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  38. Pérez JA, Mateo F, Meléndez-Hevia E (1982) Nucleotide isotachophoretic assay: method and application for determination of ATP/ADP ratio in several rat tissues. Electrophoresis 3:102–106. doi:10.1002/elps.1150030208

    Article  Google Scholar 

  39. Bergmeyer HU, Gawehn K, Grassl M (1971) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie Weinheim/Academic Press, New York, p 451

    Google Scholar 

  40. Bishop PA, Smith JF, Kime JC, Mayo JM, Tin YH (1992) Comparison of a manual and automated enzymatic technique for determining blood lactate concentrations. Int J Sports Med 13:36–39. doi:10.1055/s-2007-1021231

    Article  PubMed  CAS  Google Scholar 

  41. Agius L, Centelles J, Cascante M (2002) Multiple glucose 6-phosphate pools or channelling of flux in diverse pathways? Biochem Soc Trans 30:38–43. doi:10.1042/BST0300038

    Article  PubMed  CAS  Google Scholar 

  42. Landau BR, Sims EAH (1967) On the existence of two separate pools of glucose 6-phosphate in rat diaphragm. J Biol Chem 242:163–172

    PubMed  CAS  Google Scholar 

  43. Rogus E, Zierler KL (1973) Sodium and water contents of sarcoplasm and sarcoplasmic reticulum in rat skeletal muscle: effects of anisotonic media, ouabain and external sodium. J Physiol 233:227–270

    PubMed  CAS  Google Scholar 

  44. Walter G, Vandenborne K, Elliott M, Leigh JS (1999) In vivo ATP synthesis rates in single human muscles during high intensity exercise. J Physiol 519:901–910. doi:10.1111/j.1469-7793.1999.0901n.x

    Article  PubMed  CAS  Google Scholar 

  45. Lanza IR, Wigmore DM, Douglas E, Befroy DE, Kent-Braun JA (2006) In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol 577:353–367. doi:10.1113/jphysiol.2006.114249

    Article  PubMed  CAS  Google Scholar 

  46. Cabezas H, Raposo RR, Meléndez-Hevia E (1999) Activity and metabolic roles of the pentose phosphate cycle in several rat tissues. Mol Cell Biochem 201:57–63. doi:10.1023/A:1007042531454

    Article  PubMed  CAS  Google Scholar 

  47. Rome LC, Funke RP, Alexander RM (1990) The influence of temperature on muscle velocity and sustained performance in swimming carp. J Exp Biol 154:163–178

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from Consejería de Educación, Cultura y Deportes del Gobierno de Canarias (Spain), Ref. 1999/119; Ministerio de Ciencia y Tecnología (Spain), Ref. BMC2000-0286, and with funds from the Program for Scientific Research of Instituto del Metabolismo Celular, Tenerife (Spain), Ref. IMC-PI-005/2004. D.M.-M. was recipient of a fellowship from Consejería de Educación, Cultura y Deportes (Canarias Government), and P·P.-L. was recipient of a fellowship from Ministerio de Educación, Cultura y Deporte (Spanish Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Meléndez-Hevia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meléndez-Morales, D., de Paz-Lugo, P. & Meléndez-Hevia, E. Glycolysis activity in flight muscles of birds according to their physiological function. An experimental model in vitro to study aerobic and anaerobic glycolysis activity separately. Mol Cell Biochem 328, 127–135 (2009). https://doi.org/10.1007/s11010-009-0082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0082-9

Keywords

Navigation