Skip to main content
Log in

Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-κB

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glyoxalase I (GLO1), together with glyoxalase II and the co-factor GSH, comprise the glyoxalase system, which is responsible for the detoxification of the cytotoxic glycolytic-derived metabolite methylglyoxal (MG). We, and others, have previously reported that GLO1 is subjected to several post-translational modifications, including a NO-mediated modification and phosphorylation. In this study, we demonstrate that GLO1 is a substrate for calcium, calmodulin-dependent protein kinase II (CaMKII). Site-directed mutagenesis of several serine and threonine residues revealed that CaMKII induced phosphorylation of GLO1 at a single site Thr-106. Mutagenesis of Thr-106 to Ala in GLO1 completely abolished the CaMKII-mediated phosphorylation. A phosphopeptide bracketing phosphothreonine-106 in GLO1 was used as an antigen to generate polyclonal antibodies against phosphothreonine-106. By using this phospho-specific antibody, we demonstrated that TNF induces phosphorylation of GLO1 on Thr-106. Furthermore, we investigated the role of NO-mediated modification and phosphorylation of GLO1 in the TNF-induced transcriptional activity of NF-κB. Overexpression of WT GLO1 suppressed TNF-induced NF-κB-dependent reporter gene expression. Suppression of the basal and TNF-induced NF-κB activity was significantly stronger upon expression of a GLO1 mutant that was either deficient for the NO-mediated modification or phosphorylation on Thr-106. However, upon overexpression of a GLO1 mutant that was deficient for both types of modification, the suppressive effect of GLO1 on TNF-induced NF-κB activity was completely abolished. These results suggest that NO-modification and phosphorylation of GLO1 contribute to the suppression of TNF-induced NF-κB-dependent reporter gene expression. In line with this, knock-down of GLO1 by siRNA significantly increased TNF-induced NF-κB-dependent reporter gene expression. These findings suggest that phosphorylation and NO-modification of glyoxalase I provides another control mechanism for modulating the basal and TNF-induced expression of NF-kappaB-responsive genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-DE:

2-Dimensional gel electrophoresis

GLO1:

Glyoxalase I

MG:

Methylglyoxal

TNF:

Tumour necrosis factor

GSNO:

S-nitrosogluthathione

IEF:

Isoelectro focusing

CaM:

Calmodulin

References

  1. Kalapos MP (1999) On the promine/retine theory of cell division: now and then. Biochim Biophys Acta 1426:1–16

    PubMed  CAS  Google Scholar 

  2. Thornalley PJ (1996) Pharmacology of methylglyoxal: formation, modification of proteins and nucleic acids, and enzymatic detoxification–a role in pathogenesis and antiproliferative chemotherapy. Gen Pharmacol 27:565–573. doi:10.1016/0306-3623(95)02054-3

    PubMed  CAS  Google Scholar 

  3. Dukic-Stefanovic S, Schinzel R, Riederer P, Munch G (2001) AGES in brain ageing: AGE-inhibitors as neuroprotective and anti-dementia drugs? Biogerontology 2:19–34. doi:10.1023/A:1010052800347

    Article  PubMed  CAS  Google Scholar 

  4. Van Herreweghe F, Mao J, Chaplen FW et al (2002) Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE. Proc Natl Acad Sci USA 99:949–954. doi:10.1073/pnas.012432399

    Article  PubMed  Google Scholar 

  5. Thornalley PJ (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J 269:1–11

    PubMed  CAS  Google Scholar 

  6. Chen F, Wollmer MA, Hoerndli F et al (2004) Role for glyoxalase I in Alzheimer’s disease. Proc Natl Acad Sci USA 101:7687–7692. doi:10.1073/pnas.0402338101

    Article  PubMed  CAS  Google Scholar 

  7. Hovatta I, Tennant RS, Helton R et al (2005) Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature 438:662–666. doi:10.1038/nature04250

    Article  PubMed  CAS  Google Scholar 

  8. Rulli A, Carli L, Romani R et al (2001) Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res Treat 66:67–72. doi:10.1023/A:1010632919129

    Article  PubMed  CAS  Google Scholar 

  9. Davidson SD, Cherry JP, Choudhury MS, Tazaki H, Mallouh C, Konno S (1999) Glyoxalase I activity in human prostate cancer: a potential marker and importance in chemotherapy. J Urol 161:690–691. doi:10.1016/S0022-5347(01)61996-7

    Article  PubMed  CAS  Google Scholar 

  10. Ranganathan S, Tew KD (1993) Analysis of glyoxalase-I from normal and tumor tissue from human colon. Biochim Biophys Acta 1182:311–316

    PubMed  CAS  Google Scholar 

  11. Sakamoto H, Mashima T, Kizaki A et al (2000) Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 95:3214–3218

    PubMed  CAS  Google Scholar 

  12. Thornalley PJ, Edwards LG, Kang Y et al (1996) Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem Pharmacol 51:1365–1372. doi:10.1016/0006-2952(96)00059-7

    Article  PubMed  CAS  Google Scholar 

  13. Kavarana MJ, Kovaleva EG, Creighton DJ, Wollman MB, Eiseman JL (1999) Mechanism-based competitive inhibitors of glyoxalase I: intracellular delivery, in vitro antitumor activities, and stabilities in human serum and mouse serum. J Med Chem 42:221–228. doi:10.1021/jm9708036

    Article  PubMed  CAS  Google Scholar 

  14. de Hemptinne V, Rondas D, Vandekerckhove J, Vancompernolle K (2007) Tumour necrosis factor induces phosphorylation primarily of the nitric-oxide-responsive form of glyoxalase I. Biochem J 407:121–128. doi:10.1042/BJ20070379

    Article  PubMed  Google Scholar 

  15. Tombes RM, Faison MO, Turbeville JM (2003) Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene 322:17–31. doi:10.1016/j.gene.2003.08.023

    Article  PubMed  CAS  Google Scholar 

  16. Vanden Berghe W, Plaisance S, Boone E et al (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273:3285–3290. doi:10.1074/jbc.273.6.3285

    Article  PubMed  CAS  Google Scholar 

  17. Deswal R, Sopory SK (1999) Glyoxalase I from Brassica juncea is a calmodulin stimulated protein. Biochim Biophys Acta 1450:460–467. doi:10.1016/S0167-4889(99)00047-6

    Article  PubMed  CAS  Google Scholar 

  18. Ranganathan S, Walsh ES, Godwin AK, Tew KD (1993) Cloning and characterization of human colon glyoxalase-I. J Biol Chem 268:5661–5667

    PubMed  CAS  Google Scholar 

  19. Vancompernolle K, Boonefaes T, Mann M, Fiers W, Grooten J (2000) Tumor necrosis factor-induced microtubule stabilization mediated by hyperphosphorylated oncoprotein 18 promotes cell death. J Biol Chem 275:33876–33882. doi:10.1074/jbc.M004785200

    Article  PubMed  CAS  Google Scholar 

  20. Greif DM, Sacks DB, Michel T (2004) Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis. Proc Natl Acad Sci USA 101:1165–1170. doi:10.1073/pnas.0306377101

    Article  PubMed  CAS  Google Scholar 

  21. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65. doi:10.1038/sj.cdd.4401189

    Article  PubMed  CAS  Google Scholar 

  22. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62. doi:10.1038/nrm2083

    Article  PubMed  CAS  Google Scholar 

  23. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362. doi:10.1016/j.cell.2008.01.020

    Article  PubMed  CAS  Google Scholar 

  24. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661. doi:10.1016/j.cell.2004.12.041

    Article  PubMed  CAS  Google Scholar 

  25. Ventura JJ, Hubner A, Zhang C, Flavell RA, Shokat KM, Davis RJ (2006) Chemical genetic analysis of the time course of signal transduction by JNK. Mol Cell 21:701–710. doi:10.1016/j.molcel.2006.01.018

    Article  PubMed  CAS  Google Scholar 

  26. Inoue Y, Choi BY, Murata K, Kimura A (1990) Sexual response of Saccharomyces cerevisiae: phosphorylation of yeast glyoxalase I by a cell extract of mating factor-treated cells. J Biochem 108:4–6

    PubMed  CAS  Google Scholar 

  27. Shin R, Alvarez S, Burch AY, Jez JM, Schachtman DP (2007) Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes. Proc Natl Acad Sci USA 104:6460–6465. doi:10.1073/pnas.0610208104

    Article  PubMed  CAS  Google Scholar 

  28. Bers DM (2007) Going to cAMP just got more complicated. J Physiol 583:415–416. doi:10.1113/jphysiol.2007.140764

    Article  PubMed  CAS  Google Scholar 

  29. Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230. doi:10.1016/S0005-2728(99)00016-X

    Article  PubMed  CAS  Google Scholar 

  30. Schneider JC, El Kebir D, Chereau C et al (2003) Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol 284:H2311–H2319

    PubMed  CAS  Google Scholar 

  31. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17:349–368. doi:10.1096/fj.02-0473rev

    Article  PubMed  CAS  Google Scholar 

  32. Cameron AD, Olin B, Ridderstrom M, Mannervik B, Jones TA (1997) Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping. EMBO J 16:3386–3395. doi:10.1093/emboj/16.12.3386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Vancompernolle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Hemptinne, V., Rondas, D., Toepoel, M. et al. Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-κB. Mol Cell Biochem 325, 169–178 (2009). https://doi.org/10.1007/s11010-009-0031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0031-7

Keywords

Navigation