Skip to main content

Advertisement

Log in

Expression of fasciculation and elongation protein zeta-1 (FEZ1) in cultured rat neonatal astrocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Astrocytes play a more important role than simply providing physical support for neurons, however, the function(s) of type 1 and type 2 astrocytes (T1As, T2As), remains unclear. A DNA microarray was used to identify gene expression in cultured T1As and T2As isolated from postnatal day 1 rat cortex. Ninety-nine of the 138 differentially expressed genes were involved in a diverse number of processes. The fasciculation and elongation protein zeta-1 (FEZ1) gene was studied further because it has been suggested that it is not expressed by astrocytes. RT-PCR and Western blots confirmed the microarray data and showed that FEZ1 was present in T1 and T2As and is more highly expressed in T2As. Immunocytochemistry revealed that FEZ1 was located in the astrocytic cytoplasm and cell processes but not the nucleus. The results contribute to a clearer understanding of the two types of astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang LC, Baird DH, Hatten ME et al (1994) Astroglial differentiation is required for support of neurite outgrowth. J Neurosci 14:3195–3207

    PubMed  CAS  Google Scholar 

  2. Alexander JK, Fuss B, Colello RJ (2006) Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol 2:93–103. doi:10.1017/S1740925X0600010X

    Article  PubMed  Google Scholar 

  3. Raff MC, Ffrench-Constant C, Miller RH (1987) Glial cells in the rat optic nerve and some thoughts on remyelination in the mammalian CNS. J Exp Biol 132:35–41

    PubMed  CAS  Google Scholar 

  4. Raff MC, Abney ER, Cohen J et al (1983) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J Neurosci 3:1289–1300

    PubMed  CAS  Google Scholar 

  5. Yan M, Xia C, Niu S et al (2008) The role of TNF-alpha and its receptors in the production of beta-1, 4-galactosyltransferase I mRNA by rat primary type-2 astrocytes. Cell Mol Neurobiol 28:223–236. doi:10.1007/s10571-007-9182-9

    Article  PubMed  CAS  Google Scholar 

  6. Miller RH, Raff MC (1984) Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 4:585–592

    PubMed  CAS  Google Scholar 

  7. Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396. doi:10.1038/303390a0

    Article  PubMed  CAS  Google Scholar 

  8. Murakami K, Asou H, Adachi T et al (1999) Neutral glycolipid and ganglioside composition of type-1 and type-2 astrocytes from rat cerebral hemisphere. J Neurosci Res 55:382–393. doi:10.1002/(SICI)1097-4547(19990201)55:3<382::AID-JNR13>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  9. Raff MC, Abney ER, Miller RH (1984) Two glial cell lineages diverge prenatally in rat optic nerve. Dev Biol 106:53–60. doi:10.1016/0012-1606(84)90060-5

    Article  PubMed  CAS  Google Scholar 

  10. Bloom L, Horvitz HR (1997) The Caenorhabditis elegans gene unc-76 and its human homologs define a new gene family involved in axonal outgrowth and fasciculation. Proc Natl Acad Sci USA 94:3414–3419. doi:10.1073/pnas.94.7.3414

    Article  PubMed  CAS  Google Scholar 

  11. Kuroda S, Nakagawa N, Tokunaga C et al (1999) Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C zeta-interacting protein. J Cell Biol 144:403–411. doi:10.1083/jcb.144.3.403

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki T, Okada Y, Semba S et al (2005) Identification of FEZ1 as a protein that interacts with JC virus agnoprotein and microtubules: role of agnoprotein-induced dissociation of FEZ1 from microtubules in viral propagation. J Biol Chem 280:24948–24956. doi:10.1074/jbc.M411499200

    Article  PubMed  CAS  Google Scholar 

  13. Ikuta J, Maturana A, Fujita T et al (2007) Fasciculation and elongation protein zeta-1 (FEZ1) participates in the polarization of hippocampal neuron by controlling the mitochondrial motility. Biochem Biophys Res Commun 353:127–132. doi:10.1016/j.bbrc.2006.11.142

    Article  PubMed  CAS  Google Scholar 

  14. Fujita T, Maturana AD, Ikuta J et al (2007) Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem Biophys Res Commun 361:605–610. doi:10.1016/j.bbrc.2007.07.050

    Article  PubMed  CAS  Google Scholar 

  15. Assmann EM, Alborghetti MR, Camargo ME et al (2006) FEZ1 dimerization and interaction with transcription regulatory proteins involves its coiled-coil region. J Biol Chem 281:9869–9881. doi:10.1074/jbc.M513280200

    Article  PubMed  CAS  Google Scholar 

  16. Honda A, Miyoshi K, Baba K et al (2004) Expression of fasciculation and elongation protein zeta-1 (FEZ1) in the developing rat brain. Brain Res Mol Brain Res 122:89–92. doi:10.1016/j.molbrainres.2003.11.020

    Article  PubMed  CAS  Google Scholar 

  17. Carlson DJ, Strait KA, Schwartz HL et al (1996) Thyroid hormone receptor isoform content in cultured type 1 and type 2 astrocytes. Endocrinology 137:911–917. doi:10.1210/en.137.3.911

    Article  PubMed  CAS  Google Scholar 

  18. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902. doi:10.1083/jcb.85.3.890

    Article  PubMed  CAS  Google Scholar 

  19. Jianghong H, Ye Z, Chunlin X et al (2008) Expression of fasciculation and elongation protein zeta-1 in type 1 and type 2 astrocytes. Acta Anat Sin 39:636–639

    Google Scholar 

  20. Miller RH, Abney ER, David S et al (1986) Is reactive gliosis a property of a distinct subpopulation of astrocytes? J Neurosci 6:22–29

    PubMed  CAS  Google Scholar 

  21. Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257. doi:10.1038/325253a0

    Article  PubMed  CAS  Google Scholar 

  22. Tan L, Sun S, Duan S et al (2005) Regulation of astroglia on synaptic plasticity in the CA1 region of rat hippocampus. J Huazhong Univ Sci Technolog Med Sci 25:484–487

    PubMed  Google Scholar 

  23. Jimenez AI, Castro E, Mirabet M et al (1999) Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia 26:119–128. doi:10.1002/(SICI)1098-1136(199904)26:2<119::AID-GLIA3>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  24. Chen G, Li HM, Chen YR et al (2007) Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann–Pick disease type C. Glia 55:1509–1518. doi:10.1002/glia.20563

    Article  PubMed  Google Scholar 

  25. Ffrench-Constant C, Raff MC (1986) The oligodendrocyte-type-2 astrocyte cell lineage is specialized for myelination. Nature 323:335–338. doi:10.1038/323335a0

    Article  PubMed  CAS  Google Scholar 

  26. Hollander H, Makarov F, Dreher Z et al (1991) Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Muller cells. J Comp Neurol 313:587–603. doi:10.1002/cne.903130405

    Article  PubMed  CAS  Google Scholar 

  27. Sims TJ, Waxman SG, Black JA et al (1985) Perinodal astrocytic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord. Brain Res 337:321–331. doi:10.1016/0006-8993(85)90069-1

    Article  PubMed  CAS  Google Scholar 

  28. Blasius TL, Cai D, Jih GT et al (2007) Two binding partners cooperate to activate the molecular motor Kinesin-1. J Cell Biol 176:11–17. doi:10.1083/jcb.200605099

    Article  PubMed  CAS  Google Scholar 

  29. Koushika SP (2008) “JIP”ing along the axon: the complex roles of JIPs in axonal transport. Bioessays 30:10–14. doi:10.1002/bies.20695

    Article  PubMed  CAS  Google Scholar 

  30. Hackney DD, Stock MF (2008) Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules. Biochemistry 47:7770–7778. doi:10.1021/bi8006687

    Article  PubMed  CAS  Google Scholar 

  31. Skene JH, Virag I (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol 108:613–624. doi:10.1083/jcb.108.2.613

    Article  PubMed  CAS  Google Scholar 

  32. Aigner L, Caroni P (1995) Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones. J Cell Biol 128:647–660. doi:10.1083/jcb.128.4.647

    Article  PubMed  CAS  Google Scholar 

  33. Denny JB (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 4:293–304. doi:10.2174/157015906778520782

    Article  PubMed  CAS  Google Scholar 

  34. Kalil K, Skene JH (1986) Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J Neurosci 6:2563–2570

    PubMed  CAS  Google Scholar 

  35. Meiri KF, Pfenninger KH, Willard MB (1986) Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci USA 83:3537–3541. doi:10.1073/pnas.83.10.3537

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman PN (1989) Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons. J Neurosci 9:893–897

    PubMed  CAS  Google Scholar 

  37. Vitkovic L, Steisslinger HW, Aloyo VJ et al (1988) The 43-kDa neuronal growth-associated protein (GAP-43) is present in plasma membranes of rat astrocytes. Proc Natl Acad Sci USA 85:8296–8300. doi:10.1073/pnas.85.21.8296

    Article  PubMed  CAS  Google Scholar 

  38. Sensenbrenner M, Lucas M, Deloulme JC (1997) Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J Mol Med 75:653–663. doi:10.1007/s001090050149

    Article  PubMed  CAS  Google Scholar 

  39. Deloulme JC, Janet T, Au D et al (1990) Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0–2A glial cell lineage. Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen. J Cell Biol 111:1559–1569. doi:10.1083/jcb.111.4.1559

    Article  PubMed  CAS  Google Scholar 

  40. da Cunha A, Vitkovic L (1990) Regulation of immunoreactive GAP-43 expression in rat cortical macroglia is cell type specific. J Cell Biol 111:209–215. doi:10.1083/jcb.111.1.209

    Article  PubMed  CAS  Google Scholar 

  41. McKay RD (1989) The origins of cellular diversity in the mammalian central nervous system. Cell 58:815–821. doi:10.1016/0092-8674(89)90934-3

    Article  PubMed  CAS  Google Scholar 

  42. Jeffrey PL, Balcar VJ, Tolhurst O et al (2003) Avian Purkinje neuronal cultures: extrinsic control of morphology by cell type and glutamate. Methods Cell Biol 71:89–109. doi:10.1016/S0091-679X(03)01006-9

    Article  PubMed  CAS  Google Scholar 

  43. Lillien LE, Sendtner M, Raff MC (1990) Extracellular matrix-associated molecules collaborate with ciliary neurotrophic factor to induce type-2 astrocyte development. J Cell Biol 111:635–644. doi:10.1083/jcb.111.2.635

    Article  PubMed  CAS  Google Scholar 

  44. Hochstim C, Deneen B, Lukaszewicz A et al (2008) Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133:510–522. doi:10.1016/j.cell.2008.02.046

    Article  PubMed  CAS  Google Scholar 

  45. Liao H, Huang W, Schachner M et al (2008) Beta 1 integrin-mediated effects of tenascin-R domains EGFL and FN6–8 on neural stem/progenitor cell proliferation and differentiation in vitro. J Biol Chem 283:27927–27936. doi:10.1074/jbc.M804764200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant No. 30772242). The authors thank Dr. T. FitzGibbon for comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunlin Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Liu, J., Zhang, Z. et al. Expression of fasciculation and elongation protein zeta-1 (FEZ1) in cultured rat neonatal astrocytes. Mol Cell Biochem 325, 159–167 (2009). https://doi.org/10.1007/s11010-009-0030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0030-8

Keywords

Navigation