Skip to main content
Log in

Analysis of quaternary structure of a [LDH-like] malate dehydrogenase of Plasmodium falciparum with oligomeric mutants

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

l-Malate dehydrogenase (PfMDH) from Plasmodium falciparum, the causative agent for the most severe form of malaria, has shown remarkable similarities to l-lactate dehydrogenase (PfLDH). PfMDH is more closely related to [LDH-like] MDHs characterized in archae and other prokaryotes. Initial sequence analysis and identification of critical amino acid residues involved in inter-subunit salt-bridge interactions predict tetrameric structure for PfMDH. The catalytically active recombinant PfMDH was characterized as a tetramer. The enzyme is localized primarily in the parasites cytosol. To gain molecular insights into PfMDH/PfLDH relationships and to understand the quaternary structure of PfMDH, dimers were generated by mutation to the potential salt-bridge interacting sites. The R183A and R214G mutations, which snapped the salt bridges between the dimers and resulted in lower dimeric state, did not affect catalytic properties of the enzyme. The mutant dimers of PfMDH were active equally as the wild-type PfMDH. The studies reveal structure of PfMDH as a dimer of dimers. The tetrameric state of PfMDH was not essential for catalytic functions of the enzyme but may be an evolutionary adaptation for cytosolic localization to support its role in NAD/NADH coupling, an important metabolic function for survival of the malaria parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lang-Unnasch N (1992) Purification and properties of Plasmodium falciparum malate dehydrogenase. Mol Biochem Parasitol 50:17–25. doi:10.1016/0166-6851(92)90240-K

    Article  PubMed  CAS  Google Scholar 

  2. Dunn CR, Banfield MJ, Barker JJ et al (1996) The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat Struct Biol 3:912–915. doi:10.1038/nsb1196-912

    Article  PubMed  CAS  Google Scholar 

  3. Minarik P, Tomaskova N, Kollarova M et al (2002) Malate dehydrogenases—structure and function. Gen Physiol Biophys 21:257–265

    PubMed  CAS  Google Scholar 

  4. Tripathi AK, Desai PV, Pradhan A et al (2004) An α-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum: Cloning and biochemical characterization of the enzyme. Eur J Biochem 271:3488–3502. doi:10.1111/j.1432-1033.2004.04281.x

    Article  PubMed  CAS  Google Scholar 

  5. Brown WM, Yowell CA, Hoard A et al (2004) Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry 43:6219–6229. doi:10.1021/bi049892w

    Article  PubMed  CAS  Google Scholar 

  6. Nicholls DJ, Miller J, Scawen MD et al (1992) The importance of arginine 102 for the substrate specificity of E. coli malate dehydrogenase. Biochem Biophys Res Commun 189:1057–1062. doi:10.1016/0006-291X(92)92311-K

    Article  PubMed  CAS  Google Scholar 

  7. Chapman ADM, Cortes A, Dafforn TR et al (1999) Structural basis of substrate specificity in malate dehydrogenases: crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase, α-ketomalonate and tetrahydoNAD. J Mol Biol 285:703–712. doi:10.1006/jmbi.1998.2357

    Article  PubMed  CAS  Google Scholar 

  8. Hall MD, Banaszak LJ (1993) Crystal structure of a ternary complex of Escherichia coli malate dehydrogenase citrate and NAD at 1.9 Å resolution. J Mol Biol 232:213–222. doi:10.1006/jmbi.1993.1377

    Article  PubMed  CAS  Google Scholar 

  9. Wilks HM, Hart KW, Feeney R et al (1988) A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242:1541–1544. doi:10.1126/science.3201242

    Article  PubMed  CAS  Google Scholar 

  10. Boernke WE, Millard CS, Stevens PW et al (1995) Stringency of substrate-specificity of Escherichia coli malate-dehydrogenase. Arch Biochem Biophys 322:43–52. doi:10.1006/abbi.1995.1434

    Article  PubMed  CAS  Google Scholar 

  11. Sherman IW (1966) Malic dehydrogenase heterogeneity in malaria (Plasmodium lophurae and Plasmodium berghei. J Protozool 13:344–349

    PubMed  CAS  Google Scholar 

  12. Uyemura SA, Luo S, Vieira M et al (2004) Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ. J Biol Chem 279:385–393. doi:10.1074/jbc.M307264200

    Article  PubMed  CAS  Google Scholar 

  13. Painter HJ, Morrisey JM, Mather MW et al (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91. doi:10.1038/nature05572

    Article  PubMed  CAS  Google Scholar 

  14. Fisher N, Bray PG, Ward SA et al (2008) Malaria-parasite mitochondrial dehydrogenases as drug targets: too early to write the obituary. Trends Parasitol 24:9–10. doi:10.1016/j.pt.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  15. Fisher N, Bray PG, Ward SA et al (2007) The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol 23:305–310. doi:10.1016/j.pt.2007.04.014

    Article  PubMed  CAS  Google Scholar 

  16. Chan M, Sim TS (2004) Functional characterization of an alternative [lactate dehydrogenase-like] malate dehydrogenase in Plasmodium falciparum. Parasitol Res 92:43–47. doi:10.1007/s00436-003-0996-1

    Article  PubMed  CAS  Google Scholar 

  17. Madern D (2002) Molecular evolution within the l-malate and l-lactate dehydrogenase super-family. J Mol Evol 54:825–840. doi:10.1007/s00239-001-0088-8

    Article  PubMed  CAS  Google Scholar 

  18. Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369

    PubMed  CAS  Google Scholar 

  19. Madern D, Ebel C, Mevarech M et al (2000) Insights into the molecular relationships between malate and lactate dehydrogenases: structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric l-[LDH-like] malate dehydrogenase from the halophilic Archaeon Haloarcula marismortui. Biochemistry 39:1001–1010. doi:10.1021/bi9910023

    Article  PubMed  CAS  Google Scholar 

  20. Madern D, Cai X, Abrahamsen MS, Zhu G (2004) Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Mol Biol Evol 21:489–497. doi:10.1093/molbev/msh042

    Article  PubMed  CAS  Google Scholar 

  21. Richard SB, Madern D, Garcin E et al (2000) Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 Å resolution structures of the WT and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 39:992–1000. doi:10.1021/bi991001a

    Article  PubMed  CAS  Google Scholar 

  22. Dym O, Mevarech M, Sussman JL (1995) Structural features that stabilize halophilic malate dehydrogenase from an Archaebacterium. Science 267:1344–1346. doi:10.1126/science.267.5202.1344

    Article  PubMed  CAS  Google Scholar 

  23. Bjørk A, Mantzilas D, Sirevag R et al (2003) Electrostatic interactions across the dimer–dimer interface contribute to the pH-dependent stability of a tetrameric malate dehydrogenase. FEBS Lett 553:423–426. doi:10.1016/S0014-5793(03)01076-7

    Article  PubMed  CAS  Google Scholar 

  24. Trager W, Jenson JB (1976) Human malaria parasites in continuous culture. Science 193:673–675. doi:10.1126/science.781840

    Article  PubMed  CAS  Google Scholar 

  25. Winter VJ, Cameron A, Tranter R (2003) Crystal structure of Plasmodium berghei lactate dehydrogenase indicates the unique structural differences of these enzymes are shared across the Plasmodium genus. Mol Biochem Parasitol 13:10–11

    Google Scholar 

  26. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85. doi:10.1038/356083a0

    Article  PubMed  CAS  Google Scholar 

  27. Godzik A, Kolinski A, Skolnick J (1992) Topology fingerprint approach to the inverse protein folding problem. J Mol Biol 227:2227–2238. doi:10.1016/0022-2836(92)90693-E

    Article  Google Scholar 

  28. Zhu G, Keithly JS (2002) Alpha-proteobacterial relationship of apicomplexan lactate and malate dehydrogenases. J Eukaryot Microbiol 49:255–261. doi:10.1111/j.1550-7408.2002.tb00532.x

    Article  PubMed  CAS  Google Scholar 

  29. Sherman IW (1998) Carbohydrate metabolism of asexual stages. In: Sherman IW (ed) Malaria, parasite biology, pathogenesis and protection. ASM Press, Washington, DC, pp 135–143

    Google Scholar 

  30. Trejo F, Gelpi JL, Ferrer A et al (2001) Contribution of engineered electrostatic interactions to the stability of cytosolic malate dehydrogenase. Protein Eng 14:911–917. doi:10.1093/protein/14.11.911

    Article  PubMed  CAS  Google Scholar 

  31. Irimia A, Ebel C, Madern D et al (2003) The oligomeric states of Haloarcula marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies. J Mol Biol 326:859–873. doi:10.1016/S0022-2836(02)01450-X

    Article  PubMed  CAS  Google Scholar 

  32. Breiter DR, Resnik E, Banaszak LJ (1994) Engineering the quaternary structure of an enzyme: construction and analysis of a monomeric form of malate dehydrogenase from Escherichia coli. Protein Sci 3:2023–2032

    Article  PubMed  CAS  Google Scholar 

  33. Hunter GR, Hellman U, Cazzulo JJ et al (2000) Tetrameric and dimeric malate dehydrogenase isoenzymes in Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 105:203–214. doi:10.1016/S0166-6851(99)00176-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CDC cooperative agreement U01/CI 000211-01. We thank Dr. Prashant Desai for his sincere help and advice in molecular modeling studies. NCNPR also gets financial support from United States Department of Agriculture-Agricultural Research Services (USDA-ARS) through a cooperative scientific agreement no. 58-6408-2-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babu L. Tekwani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, A., Mukherjee, P., Tripathi, A.K. et al. Analysis of quaternary structure of a [LDH-like] malate dehydrogenase of Plasmodium falciparum with oligomeric mutants. Mol Cell Biochem 325, 141–148 (2009). https://doi.org/10.1007/s11010-009-0028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0028-2

Keywords

Navigation