Skip to main content

Advertisement

Log in

Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Curcumin (diferuloylmethane), a biologically active ingredient derived from rhizome of the plant Curcuma longa, has potent anticancer properties as demonstrated in a plethora of human cancer cell lines/animal carcinogenesis model and also acts as a biological response modifier in various disorders. We have reported previously that dietary supplementation of curcumin suppresses renal ornithine decarboxylase (Okazaki et al. Biochim Biophys Acta 1740:357–366, 2005) and enhances activities of antioxidant and phase II metabolizing enzymes in mice (Iqbal et al. Pharmacol Toxicol 92:33–38, 2003) and also inhibits Fe-NTA-induced oxidative injury of lipids and DNA in vitro (Iqbal et al. Teratog Carcinog Mutagen 1:151–160, 2003). This study was designed to examine whether curcumin possess the potential to suppress the oxidative damage caused by kidney-specific carcinogen, Fe-NTA, in animals. In accord with previous report, at 1 h after Fe-NTA treatment (9.0 mg Fe/kg body weight intraperitoneally), a substantial increased formation of 4-hydroxy-2-nonenal (HNE)-modified protein adducts in renal proximal tubules of animals was observed. Likewise, the levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG) and protein reactive carbonyl, an indicator of protein oxidation, were also increased at 1 h after Fe-NTA treatment in the kidneys of animals. The prophylactic feeding of animals with 1.0% curcumin in diet for 4 weeks completely abolished the formation of (i) HNE-modified protein adducts, (ii) 8-OHdG, and (iii) protein reactive carbonyl in the kidneys of Fe-NTA-treated animals. Taken together, our results suggest that curcumin may afford substantial protection against oxidative damage caused by Fe-NTA, and these protective effects may be mediated via its antioxidant properties. These properties of curcumin strongly suggest that it could be used as a cancer chemopreventive agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hogg N (1998) Free radicals in disease. Semin Reprod Endocrinol 16:241–288

    Article  PubMed  CAS  Google Scholar 

  2. Okada S (1996) Iron induced carcinogenesis: the role of reactive oxygen free radicals. Pathol Int 46:311–332

    Article  PubMed  CAS  Google Scholar 

  3. Athar M, Iqbal M (1998) Ferric nitrilotriacetate promotes N-diethylnitrosoamine-induced renal tumorigenesis in rat: implications for the involvement of oxidative stress. Carcinogenesis 19:1133–1139. doi:10.1093/carcin/19.6.1133

    Article  PubMed  CAS  Google Scholar 

  4. Dutta KK, Zhong Y, Liu YT et al (2007) Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci 98:1845–1852. doi:10.1111/j.1349-7006.2007.00619.x

    Article  PubMed  CAS  Google Scholar 

  5. Comporti M (1999) Lipid peroxidation and biogenic aldehydes: from the identification of 4-hydroxynonenal to further achievements in biopathology. Free Radic Res 28:623–635. doi:10.3109/10715769809065818

    Article  Google Scholar 

  6. Esterbauer H, Schaur JS, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128. doi:10.1016/0891-5849(91)90192-6

    Article  PubMed  CAS  Google Scholar 

  7. Toyokuni S, Uchida K, Okamoto K et al (1994) Formation of 4-hydroxy-2-nonenal-modified proteins in the renal proximal tubules of rats treated with a renal carcinogen, ferric nitrilotriacetate. Proc Natl Acad Sci USA 91:2616–2620. doi:10.1073/pnas.91.7.2616

    Article  PubMed  CAS  Google Scholar 

  8. Uchida K, Fukuda A, Kawakishi S et al (1995) A renal carcinogen ferric nitrilotriacetate mediates a temporary accumulation of aldehyde-modified proteins within cytosolic compartment of rat kidney. Arch Biochem Biophys 317:405–411. doi:10.1006/abbi.1995.1181

    Article  PubMed  CAS  Google Scholar 

  9. Umemura T, Sai K, Takagi A et al (1990) Formation of 8-hydroxy deoxyguanosine (8-OH-dG) in rat kidney DNA after intraperitoneal administration of ferric nitrilotriacetate (Fe-NTA). Carcinogenesis 11:345–347. doi:10.1093/carcin/11.2.345

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi R, Hirano T, Asami S et al (1996) Increase in the 8-hydroxyguanine repair activity in the rat kidney after the administration of a renal carcinogen, ferric nitrilotriacetate. Environ Health Perspect 104:651–653. doi:10.2307/3432839

    Article  PubMed  CAS  Google Scholar 

  11. Toyokuni S, Mori T, Dizdaroglu M (1994) DNA base modifications in renal chromatin of Wistar rats treated with a renal carcinogen, ferric nitrilotriacetate. Int J Cancer 57:123–128. doi:10.1002/ijc.2910570122

    Article  PubMed  CAS  Google Scholar 

  12. Toyokuni S, Mori T, Hiai H et al (1995) Treatment of Wistar rats with a renal carcinogen, ferric nitrilotriacetate, causes DNA-protein cross-linking between thymine and tyrosine in their renal chromatin. Int J Cancer 62:309–313. doi:10.1002/ijc.2910620313

    Article  PubMed  CAS  Google Scholar 

  13. Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434. doi:10.1038/349431a0

    Article  PubMed  CAS  Google Scholar 

  14. Kamiya H, Miura K, Ishikawa H et al (1992) c-Ha-ras containing 8-hydroxyguanine at codon 12 induces point mutations at the modified and adjacent positions. Cancer Res 52:3483–3485

    PubMed  CAS  Google Scholar 

  15. Surh YJ, Chun KS (2007) Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 595:1449–1720

    Google Scholar 

  16. Ferguson LR, Philpott M (2007) Cancer chemoprevention by dietary bioactive components that target the immune response. Curr Cancer Drug Targets 7:459–464. doi:10.2174/156800907781386605

    Article  PubMed  CAS  Google Scholar 

  17. Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–243. doi:10.1007/978-0-387-46401-5_10

    Article  PubMed  Google Scholar 

  18. Kuttan G, Kumar KB, Guruvayoorappan C (2007) Antitumor, anti-invasion and antimetastatic effects of curcumin. Adv Exp Med Biol 595:173–184. doi:10.1007/978-0-387-46401-5_6

    Article  PubMed  Google Scholar 

  19. Johnson JJ, Mukhtar H (2007) Curcumin for chemoprevention of colon cancer. Cancer Lett 255:170–181. doi:10.1016/j.canlet.2007.03.005

    Article  PubMed  CAS  Google Scholar 

  20. Srimal RC, Dhawan BN (1973) Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25:447–452

    PubMed  CAS  Google Scholar 

  21. Srivastava R (1989) Inhibition of neutrophil response by curcumin. Agents Actions 28:298–303. doi:10.1007/BF01967418

    Article  PubMed  CAS  Google Scholar 

  22. Okazaki Y, Iqbal M, Okada S (2005) Suppressive effects of dietary curcumin on the increased activity of renal ornithine decarboxylase in mice treated with a renal carcinogen, ferric nitrilotriacetate. Biochim Biophys Acta 1740:357–366

    PubMed  CAS  Google Scholar 

  23. Iqbal M, Sharma SD, Okazaki Y et al (2003) Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Phamacol Toxicol 92:33–38. doi:10.1034/j.1600-0773.2003.920106.x

    Article  CAS  Google Scholar 

  24. Iqbal M, Okazaki Y, Okada S (2003) In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage. Teratog Carcinog Mutagen Suppl 23:151–160. doi:10.1002/tcm.10070

    Article  CAS  Google Scholar 

  25. Toyokuni S, Miyake N, Hiai H et al (1995) The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 35:189–191. doi:10.1016/0014-5793(95)00033-6

    Article  Google Scholar 

  26. Toyokuni S, Tanaka T, Hattori Y et al (1997) Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76:365–374

    PubMed  CAS  Google Scholar 

  27. Awai M, Nagasaki M, Yamanoi Y et al (1979) Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol 95:663–672

    PubMed  CAS  Google Scholar 

  28. Iqbal M, Sharma SD, Rahman A et al (1999) Evidence that ferric nitrilotriacetate mediates oxidative stress by down-regulating DT-diaphorase activity: implications for carcinogenesis. Cancer Lett 141:151–157. doi:10.1016/S0304-3835(99)00100-7

    Article  PubMed  CAS  Google Scholar 

  29. Iqbal M, Giri U, Giri DK et al (1999) Age-dependent renal accumulation of 4-hydroxy-2-nonenal (HNE)-modified proteins following parenteral administration of ferric nitrilotriacetate commensurate with its differential toxicity: implications for the involvement of HNE-protein adducts in oxidative stress and carcinogenesis. Arch Biochem Biophys 365:101–112. doi:10.1006/abbi.1999.1135

    Article  PubMed  CAS  Google Scholar 

  30. Hsu SM, Raine N, Fanger H (1981) A comparative study of the peroxidase–antiperoxidase method and an avidin–biotin complex method for studying polypeptide hormones with radio immunoassay antibodies. Am J Clin Pathol 75:734–738

    PubMed  CAS  Google Scholar 

  31. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. doi:10.1016/0076-6879(90)86141-H

    Article  PubMed  CAS  Google Scholar 

  32. Uchida K, Szweda LI, Chae HZ et al (1993) Immunochemical detection of 4-hydroxynonenal protein adducts in oxidized hepatocytes. Proc Natl Acad Sci USA 90:8742–8746. doi:10.1073/pnas.90.18.8742

    Article  PubMed  CAS  Google Scholar 

  33. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38

    Article  PubMed  CAS  Google Scholar 

  34. Levine RL (2002) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796. doi:10.1016/S0891-5849(02)00765-7

    Article  PubMed  CAS  Google Scholar 

  35. Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res 45:1–8. doi:10.1016/S0065-230X(08)60265-1

    Article  PubMed  CAS  Google Scholar 

  36. Zhang D, Okada S, Yu Y et al (1997) Vitamin E inhibits apoptosis, DNA modification, and cancer incidence induced by iron-mediated peroxidation in Wistar rat kidney. Cancer Res 57:2410–2414

    PubMed  CAS  Google Scholar 

  37. Boone CW, Kelloff GJ, Malone WE (1990) Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials: a review. Cancer Res 50:2–9

    PubMed  CAS  Google Scholar 

  38. Wargovich MJ (1997) Experimental evidence for cancer preventive elements in foods. Cancer Lett 114:11–17. doi:10.1016/S0304-3835(97)04616-8

    Article  PubMed  CAS  Google Scholar 

  39. Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA 92:5258–5265. doi:10.1073/pnas.92.12.5258

    Article  PubMed  CAS  Google Scholar 

  40. Iqbal M, Giri U, Athar M (1995) Ferric nitrilotriacetate (Fe-NTA) is a potent hepatic tumor promoter and acts through the generation of oxidative stress. Biochem Biophys Res Commun 212:557–563. doi:10.1006/bbrc.1995.2006

    Article  PubMed  CAS  Google Scholar 

  41. Hsu DZ, Wan CH, Hsv HF, Lim YM (2008) The prophylactic protective effect of seasamol against ferric nitrilotriacetate-induced acute renal injury in mice. Food Chem Toxicol 46:2736–2741. doi:10.1093/carcin/20.4.599

    Article  PubMed  CAS  Google Scholar 

  42. Iqbal M, Rezazadeh H, Ansar S et al (1998) alpha-Tocopherol (vitamin-E) ameliorates ferric nitrilotriacetate (Fe-NTA)-dependent renal proliferative response and toxicity: diminution of oxidative stress. Hum Exp Toxicol 17:163–171. doi:10.1191/096032798678908486

    Article  PubMed  CAS  Google Scholar 

  43. Iqbal M, Okazaki Y, Okada S (2007) Probucol modulates iron nitrilotriacetate (Fe-NTA) dependent renal carcinogenesis and hyperproliferative response: diminution of oxidative stress. Mol Cell Biochem 304:61–69. doi:10.1007/s11010-007-9486-6

    Article  PubMed  CAS  Google Scholar 

  44. Osawa T (2007) Nephroprotective and hepatoprotective effects of curcuminoids. Adv Exp Med Biol 58:407–423. doi:10.1007/978-0-387-46401-5_18

    Article  Google Scholar 

  45. Eybl V, Kotyzova D, Cerna P, Koutensky J (2008) Effect of melatonin, curcumin, quercetin and resveratrol on acute ferric nitrilotriacetate induced renal oxidative damage in rats. Hum Exp Toxicol 27:347–353. doi:10.1177/0960327108094508

    Article  PubMed  CAS  Google Scholar 

  46. Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387:147–163. doi:10.1016/S1383-5742(97)00035-5

    Article  PubMed  CAS  Google Scholar 

  47. Umemura T, Hasegawa R, Sai-Kato K et al (1996) Prevention by 2-mercaptoethane sulfonate and N-acetylcysteine of renal oxidative damage in rats treated with ferric nitrilotriacetate. Jpn J Cancer Res 87:882–886

    PubMed  CAS  Google Scholar 

  48. Hermanns RC, de Zwart LL, Salemink PJ et al (1998) Urinary excretion of biomarkers of oxidative kidney damage induced by ferric nitrilotriacetate. Toxicol Sci 43:241–249

    PubMed  CAS  Google Scholar 

  49. Akiyama T, Hamazaki S, Okada S (1995) Absence of ras mutations and low incidence of p53 mutations in renal cell carcinomas induced by ferric nitrilotriacetate. Jpn J Cancer Res 86:1143–1149

    PubMed  CAS  Google Scholar 

  50. Winter CK, Segall HJ, Haddon WF (1986) Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res 46:5682–5686

    PubMed  CAS  Google Scholar 

  51. Chung FL, Chen HJC, Guttenplan JB et al (1993) 2,3-Epoxy-4-hydroxynonanal as a potential tumor-initiating agent of lipid peroxidation. Carcinogenesis 14:2073–2077. doi:10.1093/carcin/14.10.2073

    Article  PubMed  CAS  Google Scholar 

  52. Amici A, Levine RL, Tsai L et al (1989) Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivatives by metal-catalyzed oxidation reactions. J Biol Chem 264:3341–3346

    PubMed  CAS  Google Scholar 

  53. Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 89:4544–4548. doi:10.1073/pnas.89.10.4544

    Article  PubMed  CAS  Google Scholar 

  54. Szweda LI, Uchida K, Tsai L et al (1993) Inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Selective modification of an active-site lysine. J Biol Chem 268:3342–3347

    PubMed  CAS  Google Scholar 

  55. Uchida K, Stadtman ER (1993) Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra and intermolecular cross-linking reaction. J Biol Chem 268:6388–6393

    PubMed  CAS  Google Scholar 

  56. Uchida K, Toyokuni S, Nishikawa K et al (1994) Michael addition-type 4-hydroxy-2-nonenal adducts in modified low-density lipoproteins: markers for atherosclerosis. Biochemistry 33:12487–12494. doi:10.1021/bi00207a016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Japan Society for the Promotion of Science (JSPS) for providing grant-in-aid for scientific research to support these studies. Authors are also thankful to Dr. S. Toyokuni (Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Japan) for providing monoclonal antibody, HNEJ-2, specific for HNE-modified protein adducts and N45.1, specific for 8-OHdG, respectively. Authors are also thankful to Dr. Nur Asikin (School of Medicine, University Malaysia Sabah) for reading the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., Okazaki, Y. & Okada, S. Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324, 157–164 (2009). https://doi.org/10.1007/s11010-008-9994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9994-z

Keywords

Navigation