Skip to main content
Log in

Alterations in the expression of myocardial calcium cycling genes in rats fed a low protein diet in utero

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

An adverse environmental experience of the growing fetus leads to permanent changes in the structure and contractile function of the heart; however, the mechanisms are incompletely understood. To examine if a maternal low protein (LP) diet can modulate the gene and protein expression of the Ca2+-cycling proteins in the neonatal heart, we employed a rat model in which pregnant dams were fed diets containing either 180 (normal) or 90 g (low) casein/kg diet for 2 weeks before mating and throughout pregnancy. A significant reduction in the L-type Ca2+-channel mRNA level in the LP group was detected at 1, 7, and 14 days of age. Although ryanodine receptor (RyR) mRNA levels progressively declined in the aging heart in both groups, the RyR mRNA levels were consistently higher in the LP group. A reduction in RyR protein content was seen only in the hearts of the LP group at 7 days of age. The Na+-Ca2+-exchanger (NCX) mRNA level was also markedly increased at all ages. Although an increase in sarco(endo)plasmic reticulum ATPase 2a (SERCA) 2a mRNA was only detected in the LP group at 7 days of age, corresponding protein level was depressed. On the other hand, an initial decrease (at 1 day of age) followed by an increase (at 14 and 28 days of age) in phospholamban (PLB) mRNA levels was detected. Although PLB protein level was also depressed at 1 day of age in the LP group, a marked increase was seen at 7 days of age. Moreover, the ratio of serine 16 and threonine 17 phosphorylated PLB to non-phosphorylated PLB was reduced at 7 days of age in the hearts of offspring of the LP group. These data suggest that maternal LP diet can induce alterations in the gene expression and protein levels of the Ca2+-cycling proteins in the neonatal heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tappia PS, Gabriel CA (2006) Role of nutrition in the development of the fetal cardiovascular system. Expert Rev Cardiovasc Ther 4:211–225. doi:10.1586/14779072.4.2.211

    Article  PubMed  CAS  Google Scholar 

  2. Cheema KK, Dent MR, Aroutiounova N, Tappia PS (2005) Prenatal exposure to maternal undernutrition induces adult cardiac dysfunction. Br J Nutr 93:471–477. doi:10.1079/BJN20041392

    Article  PubMed  CAS  Google Scholar 

  3. Tappia PS, Nijjar MS, Mahay A, Aroutiounova N, Dhalla NS (2005) Phospholipid profile in developing heart of rats exposed to low protein diet in pregnancy. Am J Physiol 289:R1400–R1406

    CAS  Google Scholar 

  4. Aroutiounova N, Fandrich R, Kardami E, Tappia PS (2007) Prenatal exposure to maternal low protein is accompanied by altered cell mitotic index in the postnatal heart. J Mol Cell Cardiol 42:S87. doi:10.1016/j.yjmcc.2007.03.760

    Article  Google Scholar 

  5. Diaz ME, Graham HK, O’Neill SC, Trafford AW, Eisner DA (2005) The control of sarcoplasmic reticulum Ca content in cardiac muscle. Cell Calcium 38:391–396. doi:10.1016/j.ceca.2005.06.017

    Article  PubMed  CAS  Google Scholar 

  6. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE (1982) Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139. doi:10.1007/BF01908167

    Article  PubMed  CAS  Google Scholar 

  7. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673. doi:10.1097/00004872-200018060-00002

    Article  PubMed  CAS  Google Scholar 

  8. Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M (1993) Pathophysiology of cardiac dysfunction in congestive heart failure. Can J Cardiol 9:873–887

    PubMed  CAS  Google Scholar 

  9. Temsah RM, Netticadan T, Chapman D, Takeda S, Mochizuki S, Dhalla NS (1999) Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. Am J Physiol 277:H584–H594

    PubMed  CAS  Google Scholar 

  10. Shao Q, Ren B, Elimban V, Tappia PS, Takeda N, Dhalla NS (2005) Modification of sarcolemmal Na+-K+-ATPase and Na+/Ca2+ exchanger expression in heart failure by blockade of renin-angiotensin system. Am J Physiol Heart Circ Physiol 288:H2637–H2646. doi:10.1152/ajpheart.01304.2004

    Article  PubMed  CAS  Google Scholar 

  11. Saini HK, Shao Q, Musat S, Takeda N, Tappia PS, Dhalla NS (2005) Imidapril treatment improves the attenuated inotropic and intracellular calcium responses to ATP in heart failure due to myocardial infarction. Br J Pharmacol 144:202–211. doi:10.1038/sj.bjp.0705867

    Article  PubMed  CAS  Google Scholar 

  12. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS (2001) Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50:2133–2138. doi:10.2337/diabetes.50.9.2133

    Article  PubMed  CAS  Google Scholar 

  13. Tappia PS, Dent MR, Aroutiounova N, Babick A, Weiler HA (2007) Gender differences in the modulation of cardiac gene expression by dietary conjugated linoleic acid isomers. Can J Physiol Pharmacol 85:465–475. doi:10.1139/Y06-104

    Article  PubMed  CAS  Google Scholar 

  14. Babick AP, Cantor EJF, Babick JT, Takeda N, Dhalla NS, Netticadan T (2004) Cardiac contractile dysfunction in J2N-k cardiomyopathic hamsters is associated with impaired SR function and regulation. Am J Physiol Cell Physiol 287:C1202–C1208. doi:10.1152/ajpcell.00155.2004

    Article  PubMed  CAS  Google Scholar 

  15. Trafford AW, Diaz ME, Sibbring GC, Eisner DA (2000) Modulation of CICR has no maintained effect on systolic Ca2+: simultaneous measurements of sarcoplasmic reticulum and sarcolemmal Ca2+ fluxes in rat ventricular myocytes. J Physiol 522:259–270. doi:10.1111/j.1469-7793.2000.t01-2-00259.x

    Article  PubMed  CAS  Google Scholar 

  16. Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442. doi:10.1002/mus.20745

    Article  PubMed  CAS  Google Scholar 

  17. Santonastasi M, Wehrens XH (2007) Ryanodine receptors as pharmacological targets for heart disease. Acta Pharmacol Sin 28:937–944. doi:10.1111/j.1745-7254.2007.00582.x

    Article  PubMed  CAS  Google Scholar 

  18. Yano M (2008) Ryanodine receptor as a new therapeutic target of heart failure and lethal arrhythmia. Circ J 72:509–514. doi:10.1253/circj.72.509

    Article  PubMed  CAS  Google Scholar 

  19. Lacampagne A, Fauconnier J, Richard S (2008) Ryanodine receptor and heart disease. Med Sci 24:399–405

    Google Scholar 

  20. Ochi R, Gupte SA (2007) Ryanodine receptor: a novel therapeutic target in heart disease. Recent Patents Cardiovasc Drug Discov 2:110–118

    Article  CAS  Google Scholar 

  21. de Trad Hejase C (2005) Phopholamban, a predicted candidate for early cardiac problem detection using signal processing techniques. Conf Proc IEEE Eng Med Biol Soc 3:2683–2686

    Google Scholar 

  22. Fernandez-Twinn DS, Ekizoglou S, Wayman A, Petry CJ, Ozanne SE (2006) Maternal low protein diet programs cardiac β-adrenergic response and signaling in 3-mo-old offspring. Am J Physiol Regul Integr Comp Physiol 291:R429–R436. doi:10.1152/ajpregu.00608.2005

    PubMed  CAS  Google Scholar 

  23. Kawamura M, Itoh H, Yura S, Mogami H, Suga S, Makino H et al (2007) Undernutrition in utero augments systolic blood pressure and cardiac remodeling in adult mouse offspring: possible involvement of local cardiac angiotensin system in development of origins of cardiovascular disease. Endocrinology 148:1218–1225. doi:10.1210/en.2006-0706

    Article  PubMed  CAS  Google Scholar 

  24. Lim K, Zimanyi MA, Black MJ (2006) Effect of maternal protein restriction in rats on cardiac fibrosis and capillarization in adulthood. Pediatr Res 60:83–87. doi:10.1203/01.pdr.0000220361.08181.c3

    Article  PubMed  Google Scholar 

  25. Tarry-Adkins JL, Martin-Gronert MS, Chen JH, Cripps RL, Ozanne SE (2008) Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J 22:2037–2044. doi:10.1096/fj.07-099523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Manitoba Medical Service Foundation. Infrastructural support was provided by the St. Boniface Hospital and Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit S. Tappia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tappia, P.S., Sandhu, H., Abbi, T. et al. Alterations in the expression of myocardial calcium cycling genes in rats fed a low protein diet in utero. Mol Cell Biochem 324, 93–99 (2009). https://doi.org/10.1007/s11010-008-9988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9988-x

Keywords

Navigation