Skip to main content
Log in

Cell type-specific expression of endogenous cardiac Troponin I antisense RNA in the neonatal rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Since the number of detected natural antisense RNA is growing, investigations upon the expression pattern of the antisense RNA become more important. As we focused our work on natural occurring antisense transcripts in human and rat heart tissues, we were interested in the question, whether the expression pattern of antisense and sense RNA can vary in different cell types of the same tissue. In our previous analysis of total neonatal rat heart tissue, we demonstrated the co-expression of both cTnI RNA species in this tissue. Now we investigated the expression of antisense and sense RNA quantitatively in neonatal cardiomyocytes (NCMs) and neonatal cardiac fibroblasts (NCFs). Performing northern blot as well as RT-PCR, we could detect natural antisense and sense RNA transcripts of cTnI in NCM and NCF implying that these transcripts are co-expressed in both cell types. The absolute amounts of the RNA transcripts were higher in NCM. Both RNA species showed identical sizes in the northern blot. Quantification by real-time PCR revealed a higher relative level of natural antisense RNA in NCF compared to NCM which points out to a cell type-specific expression of sense and antisense RNA. Our observations suggest that antisense RNA transcription may contribute to a cell type-specific regulation of the cTnI gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yelin R, Dahary D, Sorek R, Levanon EY, Goldstein O, Shoshan A, Diber A, Biton S, Tamir Y, Khosravi R, Nemzer S, Pinner E, Walach S, Bernstein J, Savitsky K, Rotman G (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21:379–386. doi:10.1038/nbt808

    Article  PubMed  CAS  Google Scholar 

  2. Luther HP, Morwinski R, Wallukat G, Haase H, Morano I (1997) Expression of sense and naturally occurring antisense mrna of myosin heavy chain in rat heart tissue and cultivated cardiomyocytes. J Mol Cell Cardiol 29:27–35. doi:10.1006/jmcc.1996.0248

    Article  PubMed  CAS  Google Scholar 

  3. Luther HP, Haase H, Hohaus A, Beckmann G, Reich J, Morano Ingo (1998) Characterization of naturally occurring myosin heavy chain antisense mRNA in rat heart. J Cell Biochem 70:110–120. doi:10.1002/(SICI)1097-4644(19980701)70:1<110::AID-JCB11>3.0.CO;2-T

    Article  PubMed  CAS  Google Scholar 

  4. Luther HP, Bartsch H, Morano I, Podlowski S, Baumann G (2005) Regulation of naturally occurring antisense RNA of myosin heavy chain (MyHC) in neonatal cardiomyocytes. J Cell Biochem 94:848–855. doi:10.1002/jcb.20319

    Article  PubMed  CAS  Google Scholar 

  5. Tobacman LS (1996) Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 58:447–481. doi:10.1146/annurev.ph.58.030196.002311

    Article  PubMed  CAS  Google Scholar 

  6. Solaro R, Rarick HM (1998) Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 83:471–480

    PubMed  CAS  Google Scholar 

  7. Podlowski S, Bramlage P, Baumann G, Morano I, Luther HP (2002) Cardiac troponin I sense-antisense RNA duplexes in the myocardium. J Cell Biochem 85:198–207. doi:10.1002/jcb.10116

    Article  PubMed  CAS  Google Scholar 

  8. Bartsch H, Voigtsberger S, Baumann G, Morano I, Luther HP (2004) Detection of a novel sense-antisense RNA-hybrid structure by RACE experiments on endogenous troponin I antisense RNA. RNA 10:1215–1224. doi:10.1261/rna.5261204

    Article  PubMed  CAS  Google Scholar 

  9. Rosok O, Sioud M (2004) Systematic identification of sense-antisense transcripts in mammalian cells. Nat Biotechnol 22:104–108. doi:10.1038/nbt925

    Article  PubMed  CAS  Google Scholar 

  10. Pittenger M (1994) Functional properties of non-muscle tropomyosin isoforms. Curr Opin Cell Biol 6:96. doi:10.1016/0955-0674(94)90122-8

    Article  PubMed  CAS  Google Scholar 

  11. Moses MA, Wiederschain D, Wu I, Fernandez CA, Ghazizadeh V, Lane WS, Flynn E, Sytkowski A, Tao T, Langer R (1999) Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci USA 96:2645–2650. doi:10.1073/pnas.96.6.2645

    Article  PubMed  CAS  Google Scholar 

  12. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis. Involv Card Hypertrophy Circ Res 91:1103–1113

    CAS  Google Scholar 

  13. Robb GB, Carson AR, Tai SC, Fish JE, Singh S, Yamada T, Scherer SW, Nakabayashi K, Marsden PA (2004) Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem 279:37982–37996. doi:10.1074/jbc.M400271200

    Article  PubMed  CAS  Google Scholar 

  14. Spencer CA, Gietz RD, Hodgetts RB (1986) Overlapping transcription units in the dopa decarboxylase region of Drosophila. Nature 322:279–281. doi:10.1038/322279a0

    Article  PubMed  CAS  Google Scholar 

  15. Shi M, Yan X, Ryan DH, Harris RB (2000) Identification of urocortin mRNA antisense transcripts in rat tissue. Brain Res Bull 53:317–324. doi:10.1016/S0361-9230(00)00349-X

    Article  PubMed  CAS  Google Scholar 

  16. Chen JJ, Sun M, Hurst LD, Carmichael GG, Rowley JD (2005) Genome-wide analysis of coordinate expression and evolution of human cis-encoded sense-antisense transcripts. Trends Genet 21:326–329. doi:10.1016/j.tig.2005.04.006

    Article  PubMed  CAS  Google Scholar 

  17. Li AW, Seyoum G, Shiu RPC, Murphy PR (1996) Expression of the rat BFGF antisense RNA transcript is tissue-specific and developmentally regulated. Mol Cell Endocrinol 118:113–123. doi:10.1016/0303-7207(96)03772-0

    Article  PubMed  CAS  Google Scholar 

  18. Kimelman D, Kirschner MW (1989) An antisense mRNA directs the covalent modification of the transcript encoding fibroblast growth factor in Xenopus oocytes. Cell 59:687–696. doi:10.1016/0092-8674(89)90015-9

    Article  PubMed  CAS  Google Scholar 

  19. Lapidot M, Yitzhak Pilpel (2006) Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EuropMol Biol Org 7:116–1222

    Google Scholar 

  20. Kumar M, Carmichael GG (1998) Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62:1415–1434

    PubMed  CAS  Google Scholar 

  21. Turner NA, Porter KE, Smith WHT, White HL, Ball SG, Balmforth AJ (2003) Chronic β2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res 57:784–792. doi:10.1016/S0008-6363(02)00729-0

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong B, Krystal G (1992) Isolation and characterization of complementary DNA for N-cym, a gene encoded by the DNA strand opposite to N-myc. Cell Growth Differ 3:385–390

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Peter Luther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigtsberger, S., Bartsch, H., Baumann, G. et al. Cell type-specific expression of endogenous cardiac Troponin I antisense RNA in the neonatal rat heart. Mol Cell Biochem 324, 1–11 (2009). https://doi.org/10.1007/s11010-008-9974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9974-3

Keywords

Navigation