Skip to main content
Log in

Cell cycle specific expression and nucleolar localization of human J-domain containing co-chaperon Mrj

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

J-domain containing co-chaperone Mrj (mammalian relative to DnaJ) has been implicated in diverse cellular functions including placental development and inhibition of Huntingtin mediated cytotoxicity. It has also been shown to interact with keratin intermediate filaments. Since keratins undergo extensive reorganization during cell division, its interactor Mrj might also play an important role in the regulation of cell cycle. In support of this hypothesis, we report the up-regulation of Mrj protein in M-phase of HeLa cells implicating its role in mitosis related activities. The protein is dispersed throughout the cell during late mitosis and is localized in nucleolus during interphase, confirming that the activity of Mrj is regulated by its cell cycle specific expression together with its differential subcellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Girard M, Poupon V, Blondeau F, McPherson PS (2005) The DnaJ-domain protein RME-8 functions in endosomal trafficking. J Biol Chem 280:40135–40143. doi:10.1074/jbc.M505036200

    Article  PubMed  CAS  Google Scholar 

  2. Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S (1994) Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263:977–980. doi:10.1126/science.8310297

    Article  PubMed  CAS  Google Scholar 

  3. Kurzik-Dumke U, Horner M, Czaja J, Nicotra MR, Simiantonaki N, Koslowski M, Natali PG (2008) Progression of colorectal cancers correlates with overexpression and loss of polarization of expression of the htid-1 tumor suppressor. Int J Mol Med 21:19–31

    PubMed  CAS  Google Scholar 

  4. Kurzik-Dumke U, Czaja J (2007) Htid-1, the human homolog of the Drosophila melanogaster l(2)tid tumor suppressor, defines a novel physiological role of APC. Cell Signal 19:1973–1985. doi:10.1016/j.cellsig.2007.05.008

    Article  PubMed  CAS  Google Scholar 

  5. Tsai MF, Wang CC, Chang GC et al (2006) A new tumor suppressor DnaJ-like heat shock protein, HLJ1, and survival of patients with non-small-cell lung carcinoma. J Natl Cancer Inst 98:825–838

    Article  PubMed  CAS  Google Scholar 

  6. DeCaprio JA (1999) The role of the J domain of SV40 large T in cellular transformation. Biologicals 27:23–28. doi:10.1006/biol.1998.0173

    Article  PubMed  CAS  Google Scholar 

  7. Zimmerman S, Tran PT, Daga RR, Niwa O, Chang F (2004) Rsp1p, a J domain protein required for disassembly and assembly of microtubule organizing centers during the fission yeast cell cycle. Dev Cell 6:497–509. doi:10.1016/S1534-5807(04)00096-6

    Article  PubMed  CAS  Google Scholar 

  8. Lin JY, DeCaprio JA (2003) SV40 large T antigen promotes dephosphorylation of p130. J Biol Chem 278:46482–46487. doi:10.1074/jbc.M307044200

    Article  PubMed  CAS  Google Scholar 

  9. Edwards MC, Liegeois N, Horecka J, DePinho RA, Sprague GF Jr, Tyers M, Elledge SJ (1997) Human CPR (cell cycle progression restoration) genes impart a Far-phenotype on yeast cells. Genetics 147:1063–1076

    PubMed  CAS  Google Scholar 

  10. Hasegawa T, Xiao H, Hamajima F, Isobe K (2000) Interaction between DNA-damage protein GADD34 and a new member of the Hsp40 family of heat shock proteins that is induced by a DNA-damaging reagent. Biochem J 352(Pt 3):795–800. doi:10.1042/0264-6021:3520795

    Article  PubMed  CAS  Google Scholar 

  11. Saito H, Uchida H (1977) Initiation of the DNA replication of bacteriophage lambda in Escherichia coli K12. J Mol Biol 113:1–25. doi:10.1016/0022-2836(77)90038-9

    Article  PubMed  CAS  Google Scholar 

  12. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36. doi :10.1379/1466-1268(1998)003<0028:SFAEOD>2.3.CO;2

    Article  PubMed  CAS  Google Scholar 

  13. Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570. doi:10.1007/s00018-006-6192-6

    Article  PubMed  CAS  Google Scholar 

  14. Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236–250. doi:10.1006/jmbi.1996.0395

    Article  PubMed  CAS  Google Scholar 

  15. Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98–112. doi :10.1379/1466-1268(2000)005<0098:MHDHCO>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  16. Hanai R, Mashima K (2003) Characterization of two isoforms of a human DnaJ homologue, HSJ2. Mol Biol Rep 30:149–153. doi:10.1023/A:1024916223616

    Article  PubMed  CAS  Google Scholar 

  17. Chuang JZ, Zhou H, Zhu M, Li SH, Li XJ, Sung CH (2002) Characterization of a brain-enriched chaperone, MRJ, that inhibits Huntingtin aggregation and toxicity independently. J Biol Chem 277:19831–19838. doi:10.1074/jbc.M109613200

    Article  PubMed  CAS  Google Scholar 

  18. Hunter PJ, Swanson BJ, Haendel MA, Lyons GE, Cross JC (1999) Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development 126:1247–1258

    PubMed  CAS  Google Scholar 

  19. Izawa I, Nishizawa M, Ohtakara K, Ohtsuka K, Inada H, Inagaki M (2000) Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J Biol Chem 275:34521–34527. doi:10.1074/jbc.M003492200

    Article  PubMed  CAS  Google Scholar 

  20. Dai YS, Xu J, Molkentin JD (2005) The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol 25:9936–9948. doi:10.1128/MCB.25.22.9936-9948.2005

    Article  PubMed  CAS  Google Scholar 

  21. Hurst DR, Mehta A, Moore BP et al (2006) Breast cancer metastasis suppressor 1 (BRMS1) is stabilized by the Hsp90 chaperone. Biochem Biophys Res Commun 348:1429–1435. doi:10.1016/j.bbrc.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  22. Celis JE, Larsen PM, Fey SJ, Celis A (1983) Phosphorylation of keratin and vimentin polypeptides in normal and transformed mitotic human epithelial amnion cells: behavior of keratin and vimentin filaments during mitosis. J Cell Biol 97:1429–1434. doi:10.1083/jcb.97.5.1429

    Article  PubMed  CAS  Google Scholar 

  23. Ku NO, Liao J, Omary MB (1998) Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J 17:1892–1906. doi:10.1093/emboj/17.7.1892

    Article  PubMed  CAS  Google Scholar 

  24. Galarneau L, Loranger A, Gilbert S, Marceau N (2007) Keratins modulate hepatic cell adhesion, size and G1/S transition. Exp Cell Res 313:179–194. doi:10.1016/j.yexcr.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  25. Watson ED, Geary-Joo C, Hughes M, Cross JC (2007) The Mrj co-chaperone mediates keratin turnover and prevents the formation of toxic inclusion bodies in trophoblast cells of the placenta. Development 134:1809–1817. doi:10.1242/dev.02843

    Article  PubMed  CAS  Google Scholar 

  26. Fey EG, Krochmalnic G, Penman S (1986) The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Biol 102:1654–1665. doi:10.1083/jcb.102.5.1654

    Article  PubMed  CAS  Google Scholar 

  27. Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI (2006) NOPdb: nucleolar proteome database. Nucleic Acids Res 34:D218–D220. doi:10.1093/nar/gkj004

    Article  PubMed  CAS  Google Scholar 

  28. Windoffer R, Leube RE (1999) Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in living cells. J Cell Sci 112(Pt 24):4521–4534

    PubMed  CAS  Google Scholar 

  29. Stewart CL, Roux KJ, Burke B (2007) Blurring the boundary: the nuclear envelope extends its reach. Science 318:1408–1412. doi:10.1126/science.1142034

    Article  PubMed  CAS  Google Scholar 

  30. Visintin R, Amon A (2000) The nucleolus: the magician’s hat for cell cycle tricks. Curr Opin Cell Biol 12:372–377. doi:10.1016/S0955-0674(00)00102-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. Anuradha Lohia and members of her lab in Bose Institute, Kolkata, India, for their generous help with fluorescence microscopy experiments. The assistance from Dr. Mitali Chatterjee and her research fellow Mr. Sudipto Ganguly of Institute of Post Graduate Medical Education and Research, Kolkata, India is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, S., Banerjee, P. & Saha, P. Cell cycle specific expression and nucleolar localization of human J-domain containing co-chaperon Mrj. Mol Cell Biochem 322, 137–142 (2009). https://doi.org/10.1007/s11010-008-9950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9950-y

Keywords

Navigation