Skip to main content

Advertisement

Log in

Regulation of apoptosis by Caspases under oxidative stress conditions in mice testicular cells: in vitro molecular mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Exposure to various toxicants is known to cause apoptosis in various cell types. The spermatogenic cells are particularly sensitive to various deleterious conditions including toxicant exposure. The affected cells might undergo apoptosis; however, the mechanisms may be different for different kinds of insults to the cells. In the present study, we looked into the mechanisms involved in apoptosis after exposure of testicular cells from mice to two different chemicals, diethyl maleate (DEM) and tert-butyl hydroperoxide (TBHP). For the study, cells were maintained for 4 h under various treatments: control (media only), 0.25 mM DEM, 0.5 mM DEM, 0.25 mM TBHP, and 0.5 mM TBHP. The treated cells were then harvested for various estimations, viz. viability, reduced and oxidized glutathione, redox ratio, free radical generation, and ethidium bromide/acridine orange co-staining. mRNA was extracted for RT-PCR analysis of Caspase 3, Caspase 8, Caspase 9, p53, p21, Bax, and Bcl-2. It was observed that both the treatments resulted in decreased levels of reduced glutathione and a concomitant increase in the oxidized form and ROS levels in a dose-dependent manner. The apoptotic cell death was evident from ethidium bromide/acridine orange staining. The mRNA expression pattern of various Caspases showed progressive increase in Caspase 3 and Caspase 9 mRNA in both the treatments in a dose-dependent manner, whereas there was no change in Caspase 8 mRNA expression. p53, p21, and Bax also showed increased expression, whereas Bcl-2 expression remained unchanged in DEM treatments and increased significantly in both TBHP treatments. Hence, the present study indicates the involvement and activation of various apoptotic factors, particularly Caspase 3 and 9 along with p53, in response to exposure of testicular cells to DEM and TBHP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jahnukainen K, Chrysis D, Hou M, Parvinen M, Eksborg S, Söder O (2004) Increased apoptosis occurring during the first wave of Spermatogenesis is stage-specific and primarily affects midpachytene spermatocytes in the rat testis. Biol Reprod 70:290–296. doi:10.1095/biolreprod.103.018390

    Article  PubMed  CAS  Google Scholar 

  2. Dudgeon C, Kek C, Demidov ON, Saito S, Fernandes K et al (2006) Tumor susceptibility and apoptosis defect in a mouse strain expressing a human p53 transgene. Cancer Res 66:2928–2936. doi:10.1158/0008-5472.CAN-05-2063

    Article  PubMed  CAS  Google Scholar 

  3. Sinha Hikim AP, Swerdloff RS (1999) Hormonal and genetic control of germ cell apoptosis in testis. Rev Reprod 4:38–47

    Article  PubMed  CAS  Google Scholar 

  4. Hampton MB, Orrenius S (1998) Redox regulation of apoptotic cell death. Biofactors 8:1–5

    Article  PubMed  CAS  Google Scholar 

  5. Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93:11848–11852. doi:10.1073/pnas.93.21.11848

    Article  PubMed  CAS  Google Scholar 

  6. Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96(9):2181–2196. doi:10.1002/jps.20874

    Article  PubMed  CAS  Google Scholar 

  7. Suji G, Sivakami S (2006) DNA damage by free radical production by aminoguanidine. Ann N Y Acad Sci 1067:191–199. doi:10.1196/annals.1354.023

    Article  PubMed  CAS  Google Scholar 

  8. Javelaud D, Besançon F (2002) Inactivation of p21WAF1 sensitizes cells to apoptosis via an increase of both p14ARF and p53 Levels and an alteration of the Bax/Bcl-2 ratio. J Biol Chem 277:37949–37954. doi:10.1074/jbc.M204497200

    Article  PubMed  CAS  Google Scholar 

  9. Kiess W, Gallaher B (1998) Hormonal control of programmed cell death/apoptosis. Eur J Endocrinol 138:482–491. doi:10.1530/eje.0.1380482

    Article  PubMed  CAS  Google Scholar 

  10. Shiah SG, Chuang SE, Kuo ML (2001) Involvement of Asp-Glu-Val-Asp-directed, Caspase-mediated mitogen-activated protein kinase kinase 1 cleavage, c-Jun N-terminal kinase activation, and subsequent Bcl-2 phosphorylation for paclitaxel-induced apoptosis in HL-60 cells. Mol Pharmacol 59(2):254–262

    PubMed  CAS  Google Scholar 

  11. Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL (2002) The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 277:16547–16552. doi:10.1074/jbc.M110629200

    Article  PubMed  CAS  Google Scholar 

  12. Aitken RJ (1995) Free radicals, lipid peroxidation and sperm function. Reprod Fertil Dev 7(4):659–668. doi:10.1071/RD9950659

    Article  PubMed  CAS  Google Scholar 

  13. Aitken RJ, Gordon E, Harkiss D et al (1998) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037–1046. doi:10.1095/biolreprod59.5.1037

    Article  PubMed  CAS  Google Scholar 

  14. Ong CN, Shen HM, Chia SE (2002) Biomarkers for male reproductive health hazards: are they available? Toxicol Lett 134:17–30. doi:10.1016/S0378-4274(02)00159-5

    Article  PubMed  CAS  Google Scholar 

  15. Agarwal A, Saleh RA (2002) Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am 29:817–827. doi:10.1016/S0094-0143(02)00081-2

    Article  PubMed  Google Scholar 

  16. Kaur P, Kaur G, Bansal MP (2006) Tertiarybutyl hydroperoxide induced oxidative stress and male reproductive activity in mice: role of transcription factor NF-kB and testicular antioxidant enzymes. Reprod Toxicol 22(3):479–484. doi:10.1016/j.reprotox.2006.03.017

    Article  PubMed  CAS  Google Scholar 

  17. Steinberger A (1973) Studies of spermatogenesis in vitro. Methods Enzymol 39:283–296. doi:10.1016/S0076-6879(75)39026-5

    Article  Google Scholar 

  18. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazoliu, assay. Cancer Res 48:589–601

    PubMed  CAS  Google Scholar 

  19. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2

    Article  PubMed  CAS  Google Scholar 

  20. Driver AS, Rao P, Kodavanti S, Mundy WR (2000) Age-related changes in the reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181. doi:10.1016/S0892-0362(99)00069-0

    Article  PubMed  CAS  Google Scholar 

  21. Chew BP, Brown CM, Park JS, Mixter PF (2003) Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis. Anticancer Res 23(4):3333–3339

    PubMed  CAS  Google Scholar 

  22. Levine B, Huang Q, Isaacs JT, Reed JC, Griffin DE, Hardwick JM (1993) Conversion of lytic to persistent alpha virus infection by the Bcl-2 cellular oncogene. Nature 361:739–742. doi:10.1038/361739a0

    Article  PubMed  CAS  Google Scholar 

  23. Grimm C, Wenzel A, Hafezi F, Reme’ CE (2000) Gene expression in the mouse retina: the effect of damaging light. Mol Vis 6:252–260

    PubMed  CAS  Google Scholar 

  24. Zender L, Hutker S, Liedtke C et al (2003) Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA 100(13):7797–7802. doi:10.1073/pnas.1330920100

    Article  PubMed  CAS  Google Scholar 

  25. Huang X, Hazlett LD (2003) Analysis of Pseudomonas aeruginosa corneal infection using an oligonucleotide microarray. Invest Ophthalmol Vis Sci 44(8):3409–3416. doi:10.1167/iovs.03-0162

    Article  PubMed  Google Scholar 

  26. Yamada K, Takane-Gyotoku N, Yuan X, Ichikawa F, Inada C, Nonaka K (1996) Mouse islet cell lysis mediated by interleukin-1-induced Fas. Diabetologia 39:1306–1312. doi:10.1007/s001250050574

    Article  PubMed  CAS  Google Scholar 

  27. Jensen TK, Bonde JP, Joffe M (2006) The influence of occupational exposure on male reproductive function. Occup Med 56:544–553. doi:10.1093/occmed/kql116

    Article  Google Scholar 

  28. Rasoulpour RJ, Boekelheide K (2005) NF-κB is activated in the rat testis following exposure to mono-(2-ethylhexyl) phthalate. Biol Reprod 72:479–486. doi:10.1095/biolreprod.104.034363

    Article  PubMed  CAS  Google Scholar 

  29. Agarwal A, Makker K, Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59(1):2–11

    PubMed  CAS  Google Scholar 

  30. Kaur P, Kalia S, Bansal MP (2006) Effect of diethyl maleate induced oxidative stress on male reproductive activity in mice: redox active enzymes and transcription factors expression. Mol Cell Biochem 291(1–2):55–61. doi:10.1007/s11010-006-9195-6

    Article  PubMed  CAS  Google Scholar 

  31. Friedrichs B, Müller C, Flohé RB (1998) Inhibition of tumor necrosis factor-α-and interleukin-1-induced endothelial E-selectin expression by thiol-modifying agents. Arterioscler Thromb Vasc Biol 18:1829–1837

    PubMed  CAS  Google Scholar 

  32. Ghosh S, Pulinilkunnil T, Yuen G et al (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol 289:H768–H776. doi:10.1152/ajpheart.00038.2005

    Article  PubMed  CAS  Google Scholar 

  33. Haidara K, Moffatt P, Denizeau F (1999) Metallothionein induction attenuates the effects of glutathione depletors in rat hepatocytes. Toxicol Sci 49:297–305. doi:10.1093/toxsci/49.2.297

    Article  PubMed  CAS  Google Scholar 

  34. Cheng Q, Nguyen T, Song H, Bonanno J (2007) Hypoxia protects human corneal endothelium from tertiary butyl hydroperoxide and paraquat-induced cell death in vitro. Exp Biol Med 232:445–453

    CAS  Google Scholar 

  35. Haidara K, Morel I, Abalea V, Gascon Barre M, Denizeau F (2002) Mechanism of tert-butylhydroperoxide induced apoptosis in rat hepatocytes: involvement of mitochondria and endoplasmic reticulum. Biochim Biophys Acta 1542:173–185. doi:10.1016/S0167-4889(01)00178-1

    Article  PubMed  CAS  Google Scholar 

  36. Pi J, Bai Y, Zhang Q, Wong V (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791. doi:10.2337/db06-1601

    Article  PubMed  CAS  Google Scholar 

  37. Ammon HP, Akhtar MS, Grimm A, Niklas H (1979) Effect of methylene blue and thiol oxidants on pancreatic islet GSH/GSSG ratios and tolbutamide mediated insulin release in vitro. Naunyn Schmiedebergs Arch Pharmacol 307(1):91–96. doi:10.1007/BF00506556

    Article  PubMed  CAS  Google Scholar 

  38. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  39. Huang DC, Strasser A (2000) BH3-only proteins-essential initiators of apoptotic cell death. Cell 103:839–842. doi:10.1016/S0092-8674(00)00187-2

    Article  PubMed  CAS  Google Scholar 

  40. Sharpless NE, DePinho RA (2002) p53: good cop/bad cop. Cell 110(1):9–12. doi:10.1016/S0092-8674(02)00818-8

    Article  PubMed  CAS  Google Scholar 

  41. Beumer TL, Roepers-Gajadien HL (1998) The role of the tumor suppressor P53 in spermatogenesis. Cell Death Differ (8):669–677. doi:10.1038/sj.cdd.4400396

  42. Gallardo JM (2007) Evaluation of antioxidant system in normal semen. Rev Invest Clin 59(1):42–47

    PubMed  CAS  Google Scholar 

  43. Yamamoto H, Ozaki T, Nakanishi M, Kikuchi H, Yoshida K, Horie H, Kuwano H, Nakagawara A (2007) Oxidative stress induces p53-dependent apoptosis in hepatoblastoma cell through its nuclear translocation. Genes Cells 12:461–471. doi:10.1111/j.1365-2443.2007.01065.x

    Article  PubMed  CAS  Google Scholar 

  44. Yaara LC, Zehavit G, Valentina Z, Tamar G, Sue H (2005) C-Abl as a modulator of p53. Biochem Biophys Res Commun 331(3):658–663

    Google Scholar 

  45. Yamanegi K, Tang S, Zheng ZM (2005) Kaposi’s sarcoma-associated herpesvirus K8ß is derived from a spliced intermediate of K8 pre-mRNA and antagonizes K8α (K-bZIP) to induce p21 and p53 and blocks K8α–CDK2 interaction. J Virol 79:14207–14221. doi:10.1128/JVI.79.22.14207-14221.2005

    Article  PubMed  CAS  Google Scholar 

  46. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911. doi:10.1101/gad.13.15.1899

    Article  PubMed  CAS  Google Scholar 

  47. Luetjens CM, Kögel D, Reimertz C, Düßmann H et al (2001) Multiple kinetics of mitochondrial cytochrome c release in drug-induced apoptosis. Mol Pharmacol 60:1008–1019

    PubMed  CAS  Google Scholar 

  48. Slee EA, Harte MT, Kluck RM, Wolf BB et al (1999) Ordering the cytochrome c-initiated Caspase cascade: hierarchical activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9-dependent manner. J Cell Biol 144:281–292. doi:10.1083/jcb.144.2.281

    Article  PubMed  CAS  Google Scholar 

  49. Saikumar P, Dong Z, Patel Y, Hall K et al (1998) Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401–3415. doi:10.1038/sj.onc.1202590

    Article  PubMed  CAS  Google Scholar 

  50. Eskes R, Antonsson B, Osen-Sand A, Montessuit S, Richter C et al (1998) Bax-induced cytochrome C release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J Cell Biol 143:217–224. doi:10.1083/jcb.143.1.217

    Article  PubMed  CAS  Google Scholar 

  51. Finucane DM, Bossy-Wetzel E, Waterhouse NJ et al (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233. doi:10.1074/jbc.274.4.2225

    Article  PubMed  CAS  Google Scholar 

  52. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002. doi:10.1073/pnas.95.9.4997

    Article  PubMed  CAS  Google Scholar 

  53. Pentikäinen V, Erkkilä K, Dunkel L (1999) Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol Endocrinol Metab 276:E310–E316

    Google Scholar 

Download references

Acknowledgments

The financial support provided by Council of Scientific and Industrial Research, Government of India, New Delhi, is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Bansal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, S., Bansal, M.P. Regulation of apoptosis by Caspases under oxidative stress conditions in mice testicular cells: in vitro molecular mechanism. Mol Cell Biochem 322, 43–52 (2009). https://doi.org/10.1007/s11010-008-9938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9938-7

Keywords

Navigation