Skip to main content

Advertisement

Log in

Role of immunoexpression of nitric oxide synthases by Hodgkin and Reed-Sternberg cells on apoptosis deregulation and on clinical outcome of classical Hodgkin lymphoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hodgkin and Reed-Sternberg (H-RS) cells of classical Hodgkin lymphoma (cHL) present an impaired expression of immunoglobulin genes, but escape apoptotic death. We investigated whether nitric oxide synthases (NOS) are expressed by H-RS cells, studied their association with EBV status and the expression of apoptotic proteins, and investigated their relationship to the clinical outcome of 171 patients. NOS1 and NOS2 were expressed in a large number of cases, whereas NOS3 expression was not detected. Positive associations were found between NOS1 and p53, bax and NOS2, bcl-2 and NOS2, bax and p53, and between bax and fasL. Inverse correlations were established between EBV and NOS2 and between EBV and bcl-2. A shorter overall survival (OS) was associated with strong expression of NOS2. In conclusion, NOS are expressed by H-RS cells of cHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Theil J, Laumen H, Marafioti T, Lenz G, Wirth T, Stein H (2001) Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed-Sternberg cells. Blood 97:3191–3196. doi:10.1182/blood.V97.10.3191

    Article  PubMed  CAS  Google Scholar 

  2. Ushmorov A, Ritz O, Hummel M et al (2004) Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. Blood 104:3326–3334. doi:10.1182/blood-2003-04-1197

    Article  PubMed  CAS  Google Scholar 

  3. Brink AA, Oudejans JJ, van den Brule AJ et al (1998) Low p53 and high bcl-2 expression in Reed-Sternberg cells predicts poor clinical outcome for Hodgkin’s disease: involvment of apoptosis resistance? Mod Pathol 11:376–383

    PubMed  CAS  Google Scholar 

  4. Rassidakis GZ, Medeiros LJ, McDonnell TJ et al (2002) BAX expression in Hodgkin and Reed-Sternberg cells of Hodgkin’s disease: correlation with clinical outcome. Clin Cancer Res 8(2):488–493

    PubMed  CAS  Google Scholar 

  5. Rassidakis GZ, Medeiros LJ, Vassilakopoulos TP et al (2002) BCL-2 expression in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease predicts a poorer prognosis in patients treated with ABVD or equivalent regimens. Blood 100:3935–3941. doi:10.1182/blood.V100.12.3935

    Article  PubMed  CAS  Google Scholar 

  6. Vassallo J, Metze K, Traina F et al (2003) The prognostic relevance of apoptosis-related proteins in classical Hodgkin’s lymphomas. Leuk Lymphoma 44(3):483–488. doi:10.1080/1042819021000037958

    Article  PubMed  Google Scholar 

  7. Kim L-H, Nadarajah VS, Peh SC, Poppema S (2004) Expression of Bcl-2 family members and presence of Epstein–Barr virus in the regulation of cell growth and death in classical Hodgkin’s lymphoma. Histopathology 44:257–267. doi:10.1111/j.0309-0167.2004.01829.x

    Article  PubMed  CAS  Google Scholar 

  8. García JF, Camacho FI, Morente M et al (2003) Hodgkin and Reed-Sternberg cells harbour alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analyses using tissue microarrays. Blood 101:681–689. doi:10.1182/blood-2002-04-1128

    Article  PubMed  Google Scholar 

  9. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456. doi:10.1016/S0891-5849(98)00092-6

    Article  PubMed  CAS  Google Scholar 

  10. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43(2):109–142

    PubMed  CAS  Google Scholar 

  11. Mayer B, Hemmens B (1997) Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22(12):477–481. Erratum in: (1998) Trends Biochem Sci 23(2):87. doi:10.1016/S0968-0004(97)01147-X

    Google Scholar 

  12. Forstermann U, Closs EI, Pollock JS et al (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    PubMed  CAS  Google Scholar 

  13. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918. doi:10.1016/0092-8674(94)90266-6

    Article  PubMed  CAS  Google Scholar 

  14. Kim PK, Zamora R, Petrosko P, Billiar TR (2001) The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol 1(8):1421–1441. doi:10.1016/S1567-5769(01)00088-1

    Article  PubMed  CAS  Google Scholar 

  15. Mannick JB, Asano K, Izumi K, Kieff E, Stamler JS (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein–Barr virus reactivation. Cell 79(7):1137–1146. doi:10.1016/0092-8674(94)90005-1

    Article  PubMed  CAS  Google Scholar 

  16. Brune B, von Knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351(3):261–272. doi:10.1016/S0014-2999(98)00274-X

    Article  PubMed  CAS  Google Scholar 

  17. Xu W, Liu LH, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12(5–6):311–320. doi:10.1038/sj.cr.7290133

    Article  PubMed  Google Scholar 

  18. Harris NL, Jaffe ES, Diebold J et al (1999) World Health Organization classification of neoplastic diseases of the hematopoietic, lymphoid tissues: report of the Clinical Advisory Committee meeting—Airlie House, Virginia, November 1997. J Clin Oncol 17(12):3835–3849

    PubMed  CAS  Google Scholar 

  19. Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med 339(21):1506–1514. doi:10.1056/NEJM199811193392104

    Article  PubMed  CAS  Google Scholar 

  20. Soini Y, Puhakka A, Kahlos K et al (2001) Endothelial nitric oxide synthase is strongly expressed in malignant mesothelioma but does not associate with vascular density or the expression of VEGF, FLK1 or FLT1. Histopathology 39(2):179–186. doi:10.1046/j.1365-2559.2001.01211.x

    Article  PubMed  CAS  Google Scholar 

  21. Cooper K, Haffajee Z (1997) bcl-2 and p53 protein expression in follicular lymphoma. J Pathol 182(3):307–310. doi:10.1002/(SICI)1096-9896(199707)182:3<307::AID-PATH873>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  22. Aoyagi K, Kohfuji K, Yano S et al (2002) The expression of proliferating cell nuclear antigen, p53, p21, and apoptosis in primary gastric lymphoma. Surgery 132(1):20–26. doi:10.1067/msy.2002.124929

    Article  PubMed  Google Scholar 

  23. Kim LH, Peh SC, Poppema S (2006) Expression of retinoblastoma protein and P16 proteins in classic Hodgkin lymphoma: relationship with expression of p53 and presence of Epstein–Barr virus in the regulation of cell growth and death. Hum Pathol 37(1):92–100. doi:10.1016/j.humpath.2005.09.028

    Article  PubMed  CAS  Google Scholar 

  24. Thorns C, Gaiser T, Lange K, Merz H, Feller AC (2002) cDNA arrays: gene expression profiles of Hodgkin’s disease and anaplastic cell lymphoma cell lines. Pathol Int 52(9):578–585. doi:10.1046/j.1320-5463.2002.01400.x

    Article  PubMed  CAS  Google Scholar 

  25. Kleinert H, Pautz A, Linker K, Schwarz PM (2004) Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500(1–3):255–266. doi:10.1016/j.ejphar.2004.07.030

    Article  PubMed  CAS  Google Scholar 

  26. Bargou RC, Leng C, Krappmann D et al (1996) High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87:4340–4347

    PubMed  CAS  Google Scholar 

  27. Bargou RC, Emmerich F, Krappmann D et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100(12):2961–2969. doi:10.1172/JCI119849

    Article  PubMed  CAS  Google Scholar 

  28. Mendes RV, Martins AR, de Nucci G, Murad F, Soares FA (2001) Expression of nitric oxide synthase isoforms and nitrotyrosine immunoreactivity by B-cell non-Hodgkin’s lymphomas and multiple myeloma. Histopathology 39:172–178. doi:10.1046/j.1365-2559.2001.01189.x

    Article  PubMed  CAS  Google Scholar 

  29. Atik E, Ergin M, Erdoğan S, Tuncer I (2006) Inducible nitric oxide synthase and apoptosis in human B cell lymphomas. Mol Cell Biochem 290:205–209. doi:10.1007/s11010-005-9114-2

    Article  PubMed  CAS  Google Scholar 

  30. Forrester K, Ambs S, Lupold SE et al (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93(6):2442–2447. doi:10.1073/pnas.93.6.2442

    Article  PubMed  CAS  Google Scholar 

  31. Ambs S, Ogunfusika MO, Merrian WG, Bennett WP, Billiar TR, Harris CC (1998) Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci USA 95(15):8823–8828. doi:10.1073/pnas.95.15.8823

    Article  PubMed  CAS  Google Scholar 

  32. Kim YM, Kim TH, Seol DW, Talanian RV, Billiar TR (1998) Nitric oxide suppression of apoptosis occurs in association with an inhibition of Bcl-2 cleavage and cytochrome c release. J Biol Chem 273(47):31437–31441. doi:10.1074/jbc.273.47.31437

    Article  PubMed  CAS  Google Scholar 

  33. Khan G, Gupta RK, Coates PJ, Slavin G (1993) Epstein–Barr virus infection and bcl-2 proto-oncogene expression separate events in the pathogenesis of Hodgkin’s disease? Am J Pathol 143(5):1270–1274

    PubMed  CAS  Google Scholar 

  34. Jiwa NM, Oudejans JJ, Bai MC et al (1995) Expression of bcl-2 protein and transcription of Epstein–Barr virus bcl-2 homologue BHRF-1 in Hodgkin’s disease: implications for different pathogenic mechanisms. Histopathology 26(6):547–553. doi:10.1111/j.1365-2559.1995.tb00273.x

    Article  PubMed  CAS  Google Scholar 

  35. Kroemer G (1997) The proto-oncogene bcl-2 and its role in regularing apoptosis. Nat Med 3:614–620. doi:10.1038/nm0697-614

    Article  PubMed  CAS  Google Scholar 

  36. Messineo C, Jamerson MH, Hunter E et al (1998) Gene expression by single Reed-Sternberg cells: pathways of apoptosis and activation. Blood 91(7):2443–2451

    PubMed  CAS  Google Scholar 

  37. Morente MM, Piris MA, Abraira V et al (1997) Adverse clinical outcome in Hodgkin’s disease is associated with loss of retinoblastoma protein expression, high Ki67 proliferation index, and absence of Epstein–Barr virus-latent membrane protein 1 expression. Blood 90(6):2429–2436

    PubMed  CAS  Google Scholar 

  38. Spector N, Milito CB, Biasoli I et al (2005) The prognostic value of the expression of Bcl-2, p53 and LMP-1 in patients with Hodgkin’s lymphoma. Leuk Lymphoma 46(9):1301–1306. doi:10.1080/10428190500126034

    Article  PubMed  CAS  Google Scholar 

  39. Nieder C, Petersen S, Petersen C et al (2001) The challenge of p53 as prognostic and predictive factor in Hodgkin’s or on-Hodgkin’s lymphoma. Ann Hematol 80(1):2–8. doi:10.1007/s002770000226

    Article  PubMed  CAS  Google Scholar 

  40. Elenitoba-Johnson KS, Medeiros LJ, Khorsand J et al (1996) P53 expression in Reed-Sternberg cells does not correlate with gene mutations in Hodgkin’s disease. Am J Clin Pathol 106(6):728–738

    PubMed  CAS  Google Scholar 

  41. Maggio EM, Stekelenburg E, Van den Berg A et al (2001) TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein–Barr virus. Int J Cancer 94(1):60–66. doi:10.1002/ijc.1438

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. José Ivanildo Neves, Mrs. Sueli Nonogaki, Mrs. Osiris Pereira Santos, Mr. Severino da Silva Ferreira, and Mr. César Eugênio Nascimento Braga for their excellent technical assistance. The present study was supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant # 03/06989-2). JV and FAS are researchers of the CNPq (Conselho Nacional de Pesquisas Científicas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio H. J. F. M. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, A.H.J.F.M., Aldred, V.L., Ribeiro, K.C.B. et al. Role of immunoexpression of nitric oxide synthases by Hodgkin and Reed-Sternberg cells on apoptosis deregulation and on clinical outcome of classical Hodgkin lymphoma. Mol Cell Biochem 321, 95–102 (2009). https://doi.org/10.1007/s11010-008-9923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9923-1

Keywords

Navigation