Skip to main content
Log in

Role of mitochondrial oxidative stress in the apoptosis induced by diospyrin diethylether in human breast carcinoma (MCF-7) cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria and associated oxidative stress have been shown to play critical roles in apoptotic death induced by various stress agents. Previously, we reported the antitumor property of diospyrin (D1), a plant-derived bisnaphthoquinonoid, and its diethylether derivative (D7), which was found to cause apoptotic death in human cancer cell lines. The present study aims to explore the relevant mechanism of apoptosis involving generation of cellular reactive oxygen species (ROS) by D7 in human breast carcinoma (MCF-7) cells. It was found that while D7 inhibited the proliferation of tumor cells, the associated apoptosis induced by D7 was prevented by treating the cells with N-acetyl-l-cysteine (NAC), an antioxidant, and cyclosporine A (CsA), an inhibitor of mitochondrial permeability transition (MPT). Experiments using suitable inhibitors also demonstrated that D7 could alter the electron flow in mitochondrial electron transport chain by affecting target(s) between complex I and complex III, and indicated the probable site of D7-induced generation of ROS. These results were further supported by confocal microscopic observation on changes in mitochondrial organization and shape in cells treated with D7. Taken together, the results of our study clearly suggested that the apoptosis induced by D7 would involve alteration of MPT, cardiolipin peroxidation, migration of Bax from cytosol to mitochondria, decreased expression of Bcl-2, and release of cytochrome c, indicating oxidative mechanism at the mitochondrial level in the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41. doi:10.1016/0009-2797(91)90029-7

    Article  CAS  PubMed  Google Scholar 

  2. Powis G (1989) Free radical formation by antitumor quinones. Free Radic Biol Med 6:63–101. doi:10.1016/0891-5849(89)90162-7

    Article  CAS  PubMed  Google Scholar 

  3. Mohan IK, Kumar KV, Naidu MU et al (2006) Protective effect of CardiPro against doxorubicin-induced cardiotoxicity in mice. Phytomedicine 13:222–229. doi:10.1016/j.phymed.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  4. Kovacic P (2003) Mechanism of drug and toxic actions of gossypol: focus on reactive oxygen species and electron transfer. Curr Med Chem 10:2711–2718. doi:10.2174/0929867033456369

    Article  CAS  PubMed  Google Scholar 

  5. Li CJ, Wang C, Pardee AB (1995) Induction of apoptosis by beta-lapachone in human prostate cancer cells. Cancer Res 55:3712–3715

    CAS  PubMed  Google Scholar 

  6. Srinivas P, Gopinath G, Banerji A et al (2004) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40:201–211. doi:10.1002/mc.20031

    Article  CAS  PubMed  Google Scholar 

  7. Chakrabarty S, Roy M, Hazra B et al (2002) Induction of apoptosis in human cancer cell lines by diospyrin, a plant-derived bisnaphthoquinonoid, and its synthetic derivatives. Cancer Lett 188:85–93. doi:10.1016/S0304-3835(02)00494-9

    Article  CAS  PubMed  Google Scholar 

  8. Hazra B, Kumar B, Biswas S et al (2005) Enhancement of the tumor inhibitory activity, in vivo, of diospyrin, a plant-derived quinonoid, through liposomal encapsulation. Toxicol Lett 157:109–117. doi:10.1016/j.toxlet.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  9. Hazra B, Sur P, Roy DK et al (1984) Biological activity of diospyrin towards Ehrlich ascites carcinoma in Swiss A mice. Planta Med 50:295–297. doi:10.1055/s-2007-969713

    Article  CAS  PubMed  Google Scholar 

  10. Das Sarma M, Ghosh R, Patra A et al (2007) Synthesis and antiproliferative activity of some novel derivatives of diospyrin, a plant-derived naphthoquinonoid. Bioorg Med Chem 15:3672–3677. doi:10.1016/j.bmc.2007.03.050

    Article  CAS  PubMed  Google Scholar 

  11. Das Sarma M, Patra A, Chowdhury R, Chaudhuri K, Hazra B (2007) Novel glycoconjugates of diospyrin, a quinonoid plant product: synthesis and evaluation of cytotoxicity against human malignant melanoma (A375) and laryngeal carcinoma (Hep 2). Org Biomol Chem 5:3115–3125. doi:10.1039/b707851j

    Article  CAS  Google Scholar 

  12. Hazra B, Das Sarma M, Kumar B et al (2007) Cytotoxicity of diospyrin and its derivatives in relation to the generation of reactive oxygen species in tumour cells in vitro and in vivo. Chemotherapy 53:173–176

    CAS  PubMed  Google Scholar 

  13. Kumar B, Joshi J, Kumar A et al (2007) Radiosensitization by diospyrin diethylether in MCF-7 breast carcinoma cell line. Mol Cell Biochem 304:287–296. doi:10.1007/s11010-007-9511-9

    Article  CAS  PubMed  Google Scholar 

  14. Kumar B, Kumar A, Pandey BN, Hazra B, Mishra KP (2008) Enhancement of radiation-induced cytotoxicity in fibrosarcoma tumor in murine models, as well as in a human cell line, by diospyrin diethylether. Int J Radiat Biol 84:429–440. doi:10.1080/09553000802030736

    Article  CAS  PubMed  Google Scholar 

  15. Armstrong JS (2007) Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol 151:1154–1165. doi:10.1038/sj.bjp.0707288

    Article  CAS  PubMed  Google Scholar 

  16. Galluzzi L, Larochette N, Zamzami N et al (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25:4812–4830. doi:10.1038/sj.onc.1209598

    Article  CAS  PubMed  Google Scholar 

  17. Pilkington GJ, Parker K, Murray SA (2008) Approaches to mitochondrially mediated cancer therapy. Semin Cancer Biol 18:226–235. doi:10.1016/j.semcancer.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  18. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  19. Pandey BN, Sarma HD, Shukla D, Mishra KP (2006) Low dose radiation induced modification of reactive oxygen species and apoptosis in thymocytes of whole body irradiated mice. Int J Low Radiat 2:111–118. doi:10.1504/IJLR.2006.007901

    Article  CAS  Google Scholar 

  20. Cai J, Jones DP (1998) Superoxide in apoptosis. Mitochondrial generation triggered by cytochrome c loss. J Biol Chem 273:11401–11404. doi:10.1074/jbc.273.19.11401

    Article  CAS  PubMed  Google Scholar 

  21. Pandey BN, Gordon DM, De Toledo SM et al (2006) Normal human fibroblasts exposed to high- or low-dose ionizing radiation: differential effects on mitochondrial protein import and membrane potential. Antioxid Redox Signal 8:1253–1261. doi:10.1089/ars.2006.8.1253

    Article  CAS  PubMed  Google Scholar 

  22. Russell JW, Golovoy D, Vincent AM et al (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748. doi:10.1096/fj.01-1027com

    Article  CAS  PubMed  Google Scholar 

  23. Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250. doi:10.1016/0076-6879(67)10048-7

    Article  CAS  Google Scholar 

  24. Li N, Ragheb K, Lawler G et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525. doi:10.1074/jbc.M210432200

    Article  CAS  PubMed  Google Scholar 

  25. Yang JC, Cortopassi GA (1998) Induction of the mitochondrial permeability transition causes release of the apoptogenic factor cytochrome c. Free Radic Biol Med 24:624–631. doi:10.1016/S0891-5849(97)00367-5

    Article  CAS  PubMed  Google Scholar 

  26. Nomura K, Imai T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipids hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193. doi:10.1042/0264-6021:3510183

    Article  CAS  PubMed  Google Scholar 

  27. Richter C (1998) Oxidative stress, mitochondria, and apoptosis. Restor Neurol Neurosci 12:59–62

    CAS  PubMed  Google Scholar 

  28. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163

    CAS  PubMed  Google Scholar 

  29. Trudel S, Paquet MR, Grinstein S (1991) Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Role of reduced oxygen metabolites. Biochem J 276(Pt 3):611–619

    CAS  PubMed  Google Scholar 

  30. Vanden Hoek TL, Becker LB, Shao Z et al (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:18092–18098. doi:10.1074/jbc.273.29.18092

    Article  Google Scholar 

  31. Wolvetang EJ, Johnson KL, Krauer K et al (1994) Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 339:40–44. doi:10.1016/0014-5793(94)80380-3

    Article  CAS  PubMed  Google Scholar 

  32. Nohl H, Jordan W (1986) The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 138:533–539. doi:10.1016/S0006-291X(86)80529-0

    Article  CAS  PubMed  Google Scholar 

  33. Taylor DE, Ghio AJ, Piantadosi CA (1995) Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch Biochem Biophys 316:70–76. doi:10.1006/abbi.1995.1011

    Article  CAS  PubMed  Google Scholar 

  34. Takuma K, Yao J, Huang J et al (2005) ABAD enhances A β-induced cell stress via mitochondrial dysfunction. FASEB J 19:597–598

    CAS  PubMed  Google Scholar 

  35. Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166. doi:10.1016/S0300-9084(02)01375-5

    Article  CAS  PubMed  Google Scholar 

  36. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840. doi:10.1007/s10495-006-0525-7

    Article  CAS  PubMed  Google Scholar 

  37. Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Board of Radiation and Nuclear Sciences, Department of Atomic Energy, Mumbai (Research Grant No. 2002/37/19/BRNS), and the University Grants Commission, New Delhi. Authors would like to acknowledge the technical assistance of Mr. Manjoor Ali, Radiation Biology and Health Sciences Division, BARC, Mumbai in the acquisition of images in Confocal Microscopy. The authors are grateful to Dr. Nandedkar, National Institute for Research in Reproductive Health, Parel, Mumbai, for providing the facility for carrying out the experiments on FACS analysis, and Mr. Akhilesh Chaurasia, SRF, CSIR, BARC for his help in fluorescence microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. N. Pandey or Banasri Hazra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, B., Kumar, A., Pandey, B.N. et al. Role of mitochondrial oxidative stress in the apoptosis induced by diospyrin diethylether in human breast carcinoma (MCF-7) cells. Mol Cell Biochem 320, 185–195 (2009). https://doi.org/10.1007/s11010-008-9920-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9920-4

Keywords

Navigation