Skip to main content
Log in

Regulation of T-type Cav3.1 channels expression by synthetic glucocorticoid dexamethasone in neonatal cardiac myocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The effect of the dexamethasone (Dex) on the regulation of the T-type Ca2+ channel expressions was investigated in primary cultures of neonatal rat ventricular myocytes. We found that Dex (1 μM) increases the T-type Ca2+ current (ICaT) associated with an increase in Cav3.1 mRNA amount. We isolated the upstream region from Cav3.1 encoding gene and tested the activity of the promoter in transfected ventricular myocytes. We found a minimal Dex-responsive region that displayed putative glucocorticoid receptor (GR) and nuclear factor kappa-B (NFκB) targets. The GR selective antagonist, RU38486 (10 μM), nearly turned off the transcriptional activity of Cav3.1 encoding gene, and an NFκB inhibitor, pyrrolodine dithiocarbonate (10 μM), completely abolished the Dex-induced mRNA increase. However, Dex-induced GR and NFκB synthesis and nuclear translocation were not timely related to Cav3.1 mRNA increase. These results indicate that both GR and NFκB were necessary, but not sufficient, to trigger the increase in Cav3.1 mRNA amount. This study showed the relationship between glucocorticoid and T-type channels up-regulation that may be involved in cardiac development and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meaney MJ, Szyf M, Seckl JR (2007) Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 13:269–277. doi:10.1016/j.molmed.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  2. Seckl JR (1998) Physiologic programming of the fetus. Clin Perinatol 25:939–962

    CAS  PubMed  Google Scholar 

  3. Jaeggi ET, Fouron JC, Silverman ED et al (2004) Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation 110:1542–1548. doi:10.1161/01.CIR.0000142046.58632.3A

    Article  PubMed  Google Scholar 

  4. Halliday HL (2004) Use of steroids in the perinatal period. Paediatr Respir Rev 5(Suppl A):S321–S327

    Article  PubMed  Google Scholar 

  5. Edwards CR, Benediktsson R, Lindsay RS et al (1993) Dysfunction of placental glucocorticoid barrier: link between fetal environment and adult hypertension? Lancet 341:355–357. doi:10.1016/0140-6736(93)90148-A

    Article  CAS  PubMed  Google Scholar 

  6. Kamphuis PJ, de Vries WB, Bakker JM et al (2007) Reduced life expectancy in rats after neonatal dexamethasone treatment. Pediatr Res 61:72–76. doi:10.1203/01.pdr.0000249980.95264.dd

    Article  CAS  PubMed  Google Scholar 

  7. Bers DM, Perez-Reyes E (1999) Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 42:339–360. doi:10.1016/S0008-6363(99)00038-3

    Article  CAS  PubMed  Google Scholar 

  8. Hagiwara N, Irisawa H, Kameyama M (1988) Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol 395:233–253

    CAS  PubMed  Google Scholar 

  9. Rossier MF, Ertel EA, Vallotton MB et al (1998) Inhibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells. J Pharmacol Exp Ther 287:824–831

    CAS  PubMed  Google Scholar 

  10. Leuranguer V, Monteil A, Bourinet E et al (2000) T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. Am J Physiol 279:H2540–H2548

    CAS  Google Scholar 

  11. Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40:135–146. doi:10.1016/j.ceca.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  12. Rodman DM, Reese K, Harral J et al (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96:864–872. doi:10.1161/01.RES.0000163066.07472.ff

    Article  CAS  PubMed  Google Scholar 

  13. Strobeck MW, Okuda M, Yamaguchi H et al (1999) Morphological transformation induced by activation of the mitogen-activated protein kinase pathway requires suppression of the T-type Ca2 + channel. J Biol Chem 274:15694–15700. doi:10.1074/jbc.274.22.15694

    Article  CAS  PubMed  Google Scholar 

  14. Chemin J, Nargeot J, Lory P (2002) Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108–15 cell line. J Neurosci 22:6856–6862

    CAS  PubMed  Google Scholar 

  15. Bertolesi GE, Jollimore CA, al Shi C (2003) Regulation of alpha1G T-type calcium channel gene (CACNA1G) expression during neuronal differentiation. Eur J Neurosci 17:1802–1810. doi:10.1046/j.1460-9568.2003.02618.x

    Article  PubMed  Google Scholar 

  16. Wang L, Bhattacharjee A, Zuo Z (1999) A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology 140:1200–1204. doi:10.1210/en.140.3.1200

    Article  CAS  PubMed  Google Scholar 

  17. Ferron L, Capuano V, Deroubaix E et al (2002) Functional and molecular characterization of a T-type Ca(2+) channel during fetal and postnatal rat heart development. J Mol Cell Cardiol 34:533–546. doi:10.1006/jmcc.2002.1535

    Article  CAS  PubMed  Google Scholar 

  18. Ferron L, Capuano V, Ruchon Y et al (2003) Angiotensin II signaling pathways mediate expression of cardiac T-type calcium channels. Circ Res 93:1241–1248. doi:10.1161/01.RES.0000106134.69300.B7

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Feng ZP, Duff HJ (1999) Glucocorticoid regulation of cardiac K+ currents and L-type Ca2+ current in neonatal mice. Circ Res 85:168–173

    CAS  PubMed  Google Scholar 

  20. Whitehurst RM Jr, Zhang M, Bhattacharjee A et al (1999) Dexamethasone-induced hypertrophy in rat neonatal cardiac myocytes involves an elevated L-type Ca(2+)current. J Mol Cell Cardiol 31:1551–1558. doi:10.1006/jmcc.1999.0990

    Article  CAS  PubMed  Google Scholar 

  21. Sainte-Marie Y, Nguyen Dinh Cat A, Perrier R et al (2007) Conditional glucocorticoid receptor expression in the heart induces atrio-ventricular block. FASEB J 21:3133–3141. doi:10.1096/fj.07-8357com

    Article  CAS  PubMed  Google Scholar 

  22. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11:1475–1489. doi:10.1093/nar/11.5.1475

    Article  CAS  PubMed  Google Scholar 

  23. Murphy EK, Spencer RL, Sipe KJ et al (2002) Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rat hippocampus. Endocrinology 143:1362–1370. doi:10.1210/en.143.4.1362

    Article  CAS  PubMed  Google Scholar 

  24. McKay LI, Cidlowski JA (1998) Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 12:45–56. doi:10.1210/me.12.1.45

    Article  CAS  PubMed  Google Scholar 

  25. Sheppard KE, Autelitano DJ (2002) 11Beta-hydroxysteroid dehydrogenase 1 transforms 11-dehydrocorticosterone into transcriptionally active glucocorticoid in neonatal rat heart. Endocrinology 143:198–204. doi:10.1210/en.143.1.198

    Article  CAS  PubMed  Google Scholar 

  26. Muller O, Pradervand S, Berger S et al (2007) Identification of corticosteroid-regulated genes in cardiomyocytes by serial analysis of gene expression. Genomics 89:370–377. doi:10.1016/j.ygeno.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839. doi:10.1016/0092-8674(95)90199-X

    Article  CAS  PubMed  Google Scholar 

  28. Bolt RJ, van Weissenbruch MM, Lafeber HN et al (2001) Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol 32:76–91. doi:10.1002/ppul.1092

    Article  CAS  PubMed  Google Scholar 

  29. Cole TJ, Blendy JA, Monaghan AP et al (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9:1608–1621. doi:10.1101/gad.9.13.1608

    Article  CAS  PubMed  Google Scholar 

  30. Seckl JR, Nyirenda MJ, Walker BR et al (1999) Chapman KE: glucocorticoids and fetal programming. Biochem Soc Trans 27:74–78

    CAS  PubMed  Google Scholar 

  31. Cohen A (1976) Adrenal and plasma corticosterone levels in the pregnant, foetal and neonatal rat, in the perinatal period. Horm Metab Res 8:474–478

    Article  CAS  PubMed  Google Scholar 

  32. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663. doi:10.1146/annurev.immunol.18.1.621

    Article  CAS  PubMed  Google Scholar 

  33. Evans-Storms RB, Cidlowski JA (2000) Delineation of an antiapoptotic action of glucocorticoids in hepatoma cells: the role of nuclear factor-kappaB. Endocrinology 141:1854–1862. doi:10.1210/en.141.5.1854

    Article  CAS  PubMed  Google Scholar 

  34. Bkaily G, Sculptoreanu A, Jacques D et al (1992) Apamin, a highly potent fetal L-type Ca2+ current blocker in single heart cells. Am J Physiol 262:H463–H471

    CAS  PubMed  Google Scholar 

  35. Zhou Z, Lipsius SL (1994) T-type calcium current in latent pacemaker cells isolated from cat right atrium. J Mol Cell Cardiol 26:1211–1219. doi:10.1006/jmcc.1994.1139

    Article  CAS  PubMed  Google Scholar 

  36. Huser J, Blatter LA, Lipsius SL (2000) Intracellular Ca2+ release contributes to automaticity in cat atrial pacemaker cells. J Physiol 524(Pt 2):415–422. doi:10.1111/j.1469-7793.2000.00415.x

    Article  CAS  PubMed  Google Scholar 

  37. Mangoni ME, Couette B, Marger L et al (2006) Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog Biophys Mol Biol 90:38–63. doi:10.1016/j.pbiomolbio.2005.05.003

    Article  CAS  PubMed  Google Scholar 

  38. Mangoni ME, Traboulsie A, Leoni AL et al (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking Cav3.1/alpha1G T-type calcium channels. Circ Res 98:1422–1430. doi:10.1161/01.RES.0000225862.14314.49

    Article  CAS  PubMed  Google Scholar 

  39. Chen CC, Lamping KG, Nuno DW et al (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416–1418. doi:10.1126/science.1089268

    Article  CAS  PubMed  Google Scholar 

  40. Kim D, Song I, Keum S (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31:35–45. doi:10.1016/S0896-6273(01)00343-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre National de la Recherche Scientifique, the Centre Chirurgical Marie Lannelongue and the Association Française contre la Myopathie (Contracts D10581A/S01091 and F11898A/S01091). The corresponding author is a Ph.D student affiliated to the University Paris Descartes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima BenMohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BenMohamed, F., Ferron, L., Ruchon, Y. et al. Regulation of T-type Cav3.1 channels expression by synthetic glucocorticoid dexamethasone in neonatal cardiac myocytes. Mol Cell Biochem 320, 173–183 (2009). https://doi.org/10.1007/s11010-008-9919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9919-x

Keywords

Navigation