Skip to main content
Log in

Integrin stimulation-induced hypertrophy in neonatal rat cardiomyocytes is NO-dependent

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Prolonged myocardial stretch typically leads to hypertrophy of cardiomyocytes. As integrins are cellular receptors of stretch, we hypothesize that integrin stimulation induces cardiomyocyte hypertrophy. Integrins of neonatal rat cardiomyocytes (NRCMs) were stimulated with a peptide containing the Arg-Gly-Asp (RGD) sequence for 24 h. For comparison, α1-adrenergic stimulation by phenylephrine (PE) for 24 h was applied. Saline-treated NRCMs were used as control. The hypertrophic response was quantified by measuring cell surface area (CSA). Phosphorylation of NO-synthase-1 (NOS1) was assessed by immunocytochemistry. CSA was increased by 38% (IQR 31–44%) with RGD and by 68% (IQR 64–84%) with PE versus control (both P < 0.001). NOS-1 phosphorylation was increased by 61% with RGD and by 21% with PE versus control (both P < 0.01). A general NOS-inhibitor (l-NAME) inhibited RGD-induced hypertrophy completely, but had no significant effect on PE-induced hypertrophy. Administration of NO-donor to NRCMs co-incubated with RGD + l-NAME partly restored hypertrophy (to 62% of the hypertrophic effect of RGD alone), but had no effect if incubated with PE + l-NAME. Ryanodine and BAPTA-AM inhibited RGD-induced hypertrophy completely but not that induced by PE. Integrin stimulation of NRCMs by RGD leads to hypertrophy, likely by activation of NOS-1. Abrogation of RGD-induced hypertrophic response upon NOS-inhibition and rescue of this hypertrophic effect by NO-donor suggest that integrin stimulation-induced hypertrophy of NRCMs is NO-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FAK:

Focal adhesion kinase

nNOS, NOS1:

Neuronal nitric oxide synthase

NO:

Nitric oxide

PBS:

Phosphate-buffered saline

ERK:

Extracellular signal-regulated kinase

MAP kinase:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase kinase, also indicated by MAPK/ERK kinase

NRCM:

Neonatal rat cardiomyocyte

PE:

Phenylephrine

RGD:

Arg-Gly-Asp-sequence

l-NAME:

Nω-nitro-l-arginine methyl ester

SMTC:

S-methyl-l-thiocitrulline

PKC:

Protein kinase C

BAPTA-AM:

1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetrakis-acetoxymethyl ester

References

  1. Mann DL, Kent RL, Cooper IV G (1989) Load regulation of the properties of adult feline cardiomyocytes: growth induction by cellular deformation. Circ Res 64:1079–1090

    CAS  PubMed  Google Scholar 

  2. Komuro I, Kaida T, Shibazaki Y et al (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    CAS  PubMed  Google Scholar 

  3. Sadoshima J, Jahn L, Takahashi T et al (1992) Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 267:10551–10560

    CAS  PubMed  Google Scholar 

  4. Kira Y, Nakaoka T, Hashimoto E et al (1994) Effect of long-term cyclic mechanical load on protein synthesis and morphological changes in cultured myocardial cells from neonatal rat. Cardiovasc Drugs Ther 8:251–262. doi:10.1007/BF00877334

    Article  CAS  PubMed  Google Scholar 

  5. Vandenburgh HH, Solerssi R, Shansky J et al (1995) Response of neonatal rat cardiomyocytes to repetitive mechanical stimulation in vitro. Ann N Y Acad Sci 752:19–29. doi:10.1111/j.1749-6632.1995.tb17403.x

    Article  CAS  PubMed  Google Scholar 

  6. Ruwhof C, van der Laarse A (2000) Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res 47:23–37. doi:10.1016/S0008-6363(00)00076-6

    Article  CAS  PubMed  Google Scholar 

  7. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887. doi:10.1161/01.RES.0000039537.73816.E5

    Article  CAS  PubMed  Google Scholar 

  8. Ross RS (2002) The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 8(Suppl):S326–S331. doi:10.1054/jcaf.2002.129263

    Article  CAS  PubMed  Google Scholar 

  9. Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–478. doi:10.1016/S0079-6107(98)00052-2

    Article  CAS  PubMed  Google Scholar 

  10. Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540:1–21. doi:10.1016/S0167-4889(01)00123-9

    Article  CAS  PubMed  Google Scholar 

  11. Franchini KG, Torsoni AS, Soares PHA et al (2000) Early activation of the multicomponent signaling complex associated with focal adhesion kinase induced by pressure overload in the rat heart. Circ Res 87:558–565

    CAS  PubMed  Google Scholar 

  12. Laser M, Willey CD, Jiang W et al (2000) Integrin activation and focal complex formation in cardiac hypertrophy. J Biol Chem 275:35624–35630. doi:10.1074/jbc.M006124200

    Article  CAS  PubMed  Google Scholar 

  13. Kovacic-Milivojevik B, Roediger F, Almeida EA et al (2001) Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol Biol Cell 12:2290–2307

    Google Scholar 

  14. Domingos PP, Fonseca PM, Nadruz W Jr et al (2002) Load-induced focal adhesion kinase activation in the myocardium: role of stretch and contractile activity. Am J Physiol Heart Circ Physiol 282:H556–H564

    CAS  PubMed  Google Scholar 

  15. van der Wees CGC, Bax WH, van der Valk EJM et al (2006) Integrin stimulation induces calcium signalling in rat cardiomyocytes by a NO-dependent mechanism. Pflügers Arch 451:588–595

    Article  CAS  PubMed  Google Scholar 

  16. Shubeita HE, McDonough PM, Harris AN et al (1990) Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 265:20555–20562

    CAS  PubMed  Google Scholar 

  17. Simpson PC, Kariya K, Karns LR et al (1991) Adrenergic hormones and control of cardiac myocyte growth. Mol Cell Biochem 104:35–43. doi:10.1007/BF00229801

    Article  CAS  PubMed  Google Scholar 

  18. Li L, Hessel M, van der Valk L et al (2004) Partial and delayed release of troponin-I compared with the release of lactate dehydrogenase from necrotic cardiomyocytes. Pflügers Arch 448:146–152

    Article  CAS  PubMed  Google Scholar 

  19. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692

    CAS  PubMed  Google Scholar 

  20. Yamazaki T, Tobe K, Hoh E et al (1993) Mechanical loading activated mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268:12069–12076

    CAS  PubMed  Google Scholar 

  21. Hynes RO (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11–25. doi:10.1016/0092-8674(92)90115-S

    Article  CAS  PubMed  Google Scholar 

  22. Lewis JM, Schwartz AM (1995) Mapping in vivo associations of cytoplasmic proteins with integrin β1 cytoplasmic domain mutants. Mol Biol Cell 6:151–160

    CAS  PubMed  Google Scholar 

  23. Chen CS, Mrksich M, Huang S et al (1997) Geometric control of cell life and death. Science 276:1425–1428. doi:10.1126/science.276.5317.1425

    Article  CAS  PubMed  Google Scholar 

  24. Ross RS, Pham C, Shai S et al (1998) β1 Integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res 82:1160–1172

    CAS  PubMed  Google Scholar 

  25. Kuppuswamy D, Kerr C, Narishige T et al (1997) Association of tyrosine-phosphorylated c-Src with the cyto-skeleton of hypertrophying myocardium. J Biol Chem 272:4500–4508. doi:10.1074/jbc.272.7.4500

    Article  CAS  PubMed  Google Scholar 

  26. Juliano RL, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120:577–585. doi:10.1083/jcb.120.3.577

    Article  CAS  PubMed  Google Scholar 

  27. Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: the road taken. Science 268:233–239. doi:10.1126/science.7716514

    Article  CAS  PubMed  Google Scholar 

  28. Parsons JT, Parsons SJ (1997) Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr Opin Cell Biol 9:187–192. doi:10.1016/S0955-0674(97)80062-2

    Article  CAS  PubMed  Google Scholar 

  29. Shyy JY, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713. doi:10.1016/S0955-0674(97)80125-1

    Article  CAS  PubMed  Google Scholar 

  30. Miyamoto S, Teramoto H, Coso OA et al (1995) Integrin function: angiotensin II mediates stretch-induced hypertrophy of cardiac molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131:791–805. doi:10.1083/jcb.131.3.791

    Article  CAS  PubMed  Google Scholar 

  31. Pham CG, Harpf AE, Keller RS et al (2000) Striated muscle-specific β1D-integrin and FAK are involved in cardiac myocyte hypertrophic response pathway. Am J Physiol Heart Circ Physiol 279:H2916–H2926

    CAS  PubMed  Google Scholar 

  32. Taylor JM, Rovin JD, Parsons JT (2000) A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J Biol Chem 275:19250–19257. doi:10.1074/jbc.M909099199

    Article  CAS  PubMed  Google Scholar 

  33. Kuster GM, Pimentel DR, Adachi T et al (2005) α1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes is mediated via thioredoxin-1-sensitive oxidative modification of thiols on Ras. Circulation 111:1192–1198. doi:10.1161/01.CIR.0000157148.59308.F5

    Article  CAS  PubMed  Google Scholar 

  34. Roberts NA, Haworth RS, Avkiran M (2005) Effects of bisindolylmaleimide PKC inhibitors on p90RSK activity in vitro and in adult ventricular myocytes. Br J Pharmacol 145:477–489. doi:10.1038/sj.bjp. 0706210

    Article  CAS  PubMed  Google Scholar 

  35. Frödin M, Gammeltoft S (1999) Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151:65–77. doi:10.1016/S0303-7207(99)00061-1

    Article  PubMed  Google Scholar 

  36. Abe J-I, Okuda M, Huang Q et al (2000) Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 275:1739–1748. doi:10.1074/jbc.275.3.1739

    Article  CAS  PubMed  Google Scholar 

  37. Glennon PE, Kaddoura S, Sale EM et al (1996) Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res 78:954–961

    CAS  PubMed  Google Scholar 

  38. Yue T-L, Gu J-L, Wang C et al (2000) Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem 275:37895–37901. doi:10.1074/jbc.M007037200

    Article  CAS  PubMed  Google Scholar 

  39. Ueyama T, Kawashima S, Sakoda T et al (2000) Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J Mol Cell Cardiol 32:947–960. doi:10.1006/jmcc.2000.1135

    Article  CAS  PubMed  Google Scholar 

  40. Thorburn J, Carlson JM, Mansour SJ et al (1995) Inhibition of a signaling pathway in cardiac muscle cells by active mitogen-activated protein kinase kinase. Mol Biol Cell 6:1479–1490

    CAS  PubMed  Google Scholar 

  41. Choukroun G, Hajjar R, Kyriakis JM et al (1998) Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest 102:1311–1320. doi:10.1172/JCI3512

    Article  CAS  PubMed  Google Scholar 

  42. Post GR, Goldstein D, Thuerauf DJ et al (1996) Dissociation of p44 and p42 mitogen-activated protein kinase activation from receptor-induced hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 271:8452–8457. doi:10.1074/jbc.271.14.8452

    Article  CAS  PubMed  Google Scholar 

  43. Gödecke A, Molojavyi A, Heger J et al (2003) Myoglobin protects the heart from inducible nitric-oxide synthase (iNOS)-mediated nitrosative stress. J Biol Chem 278:21761–21766. doi:10.1074/jbc.M302573200

    Article  PubMed  Google Scholar 

  44. Mungrue IN, Gros R, You X et al (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. J Clin Invest 109:735–743

    CAS  PubMed  Google Scholar 

  45. Wunderlich C, Schober K, Lange SA et al (2006) Disruption of caveolin-1 leads to enhanced nitrosative stress and severe systolic and diastolic heart failure. Biochem Biophys Res Commun 340:702–708. doi:10.1016/j.bbrc.2005.12.058

    Article  CAS  PubMed  Google Scholar 

  46. de Oliveira CF, Cintra KA, Teixeira SA et al (2000) Development of cardiomyocyte hypotrophy in rats under prolonged treatment with a low dose of a nitric oxide synthesis inhibitor. Eur J Pharmacol 391:121–126. doi:10.1016/S0014-2999(99)00929-2

    Article  PubMed  Google Scholar 

  47. Booz GW (2005) Putting the brakes on cardiac hypertrophy. Exploiting the NO-cGMP counter-regulatory system. Hypertension 45:341–346. doi:10.1161/01.HYP.0000156878.17006.02

    Article  CAS  PubMed  Google Scholar 

  48. Barouch LA, Cappola TP, Harrison RW et al (2003) Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodelling in mice. J Mol Cell Cardiol 35:637–644. doi:10.1016/S0022-2828(03)00079-8

    Article  CAS  PubMed  Google Scholar 

  49. Huang PL, Huang Z, Mashimo H et al (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242. doi:10.1038/377239a0

    Article  CAS  PubMed  Google Scholar 

  50. Irikura K, Huang PL, Ma J et al (1995) Cerebrovascular alterations in mice lacking neuronal nitric oxide synthase gene expression. Proc Natl Acad Sci USA 92:6823–6827. doi:10.1073/pnas.92.15.6823

    Article  CAS  PubMed  Google Scholar 

  51. Snyder SH (1995) Nitric oxide. No endothelial NO. Nature 377:196–197. doi:10.1038/377196a0

    Article  CAS  PubMed  Google Scholar 

  52. Stoyanovski D, Murphy T, Anno PR et al (1997) Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium 21:19–29. doi:10.1016/S0143-4160(97)90093-2

    Article  Google Scholar 

  53. Sun J, Xin C, Eu JP et al (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA 98:11158–11162. doi:10.1073/pnas.201289098

    Article  CAS  PubMed  Google Scholar 

  54. Vila Petroff MG, Kim SH, Pepe S et al (2001) Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat Cell Biol 3:867–873. doi:10.1038/ncb1001-867

    Article  CAS  Google Scholar 

  55. Xu L, Eu JP, Meissner G et al (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237. doi:10.1126/science.279.5348.234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Mrss. W.H. Bax and C.I. Schutte are gratefully acknowledged for expert technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. van der Laarse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umar, S., van der Valk, E.J.M., Schalij, M.J. et al. Integrin stimulation-induced hypertrophy in neonatal rat cardiomyocytes is NO-dependent. Mol Cell Biochem 320, 75–84 (2009). https://doi.org/10.1007/s11010-008-9900-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9900-8

Keywords

Navigation