Skip to main content
Log in

Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid synthase 1 (ALAS1) is the first and rate-controlling enzyme of heme biosynthesis. This study was to determine the effects of heme and selected nonheme metalloporphyrins on human ALAS1 gene expression in hepatocytes. We found that, upon heme and cobalt protoporphyrin (CoPP) treatments, ALAS1 mRNA levels were down-regulated significantly by ca. 50% or more. Measurement of mRNA in the presence of actinomycin D showed that these down-regulations were due to the decreases in mRNA half-lives. Furthermore, the levels of mitochondrial mature ALAS1 protein were down-regulated by 60–70%, but those of the cytosolic precursor protein were up-regulated by 2–5-fold. Measurement of protein in the presence of cycloheximide (CHX) suggests that elevation of the precursor form is due to the increase in protein half-lives. These results provide novel insights into the mechanisms of heme repressional effects on ALAS1 and provide a rationale for further investigation of CoPP as a therapeutic agent for acute porphyric syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALAS1:

5-Aminolevulinic acid synthase 1

ALAS2:

5-Aminolevulinic acid synthase 2

CHX:

Cycloheximide

CoPP:

Cobalt protoporphyrin

CrMP:

Chromium mesoporphyrin

GAPDH:

Glyceraldehyde phosphate dehydrogenase

HO-1:

Heme oxygenase 1

LMH:

Leghorn male hepatoma

DMSO:

Dimethyl sulfoxide

MnPP:

Manganese protoporphyrin

PCR:

Polymerase chain reaction

qRT-PCR:

Quantitative real-time polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

PBST:

Phosphate-buffered saline Tween-20

PVDF:

Polyvinylidene fluoride

SnMP:

Tin mesoporphyrin

ZnMP:

Zinc mesoporphyrin

ZnPP:

Zinc protoporphyrin

References

  1. Ades IZ (1990) Heme production in animal tissues: the regulation of biogenesis of delta-aminolevulinate synthase. Int J Biochem 22:565–578. doi:10.1016/0020-711X(90)90032-X

    Article  PubMed  CAS  Google Scholar 

  2. Bonkovsky HL, Obando JV (1999) Role of HFE gene mutations in liver diseases other than hereditary hemochromatosis. Curr Gastroenterol Rep 1:30–37. doi:10.1007/s11894-999-0084-5

    Article  PubMed  CAS  Google Scholar 

  3. Reichheld JH, Katz E, Banner BF, Szymanski IO, Saltzman JR, Bonkovsky HL (1999) The value of intravenous heme-albumin and plasmapheresis in reducing postoperative complications of orthotopic liver transplantation for erythropoietic protoporphyria. Transplantation 67:922–928. doi:10.1097/00007890-199903270-00023

    Article  PubMed  CAS  Google Scholar 

  4. Bonkovsky HL, Healey JF, Lourie AN, Gerron GG (1991) Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol 86(8):1050–1056

    PubMed  CAS  Google Scholar 

  5. Riddle RD, Yamamoto M, Engel JD (1989) Expression of delta-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci USA 86:792–796. doi:10.1073/pnas.86.3.792

    Article  PubMed  CAS  Google Scholar 

  6. Bishop DF, Henderson AS, Astrin KH (1990) Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome. Genomics 7:207–214. doi:10.1016/0888-7543(90)90542-3

    Article  PubMed  CAS  Google Scholar 

  7. Sassa S, Nagai T (1996) The role of heme in gene expression. Int J Hematol 63:167–178. doi:10.1016/0925-5710(96)00449-5

    Article  PubMed  CAS  Google Scholar 

  8. Srivastava G, Borthwick IA, Maguire DJ, Elferink CJ, Bawden MJ, Mercer JF et al (1988) Regulation of 5-aminolevulinate synthase mRNA in different rat tissues. J Biol Chem 263:5202–5209

    PubMed  CAS  Google Scholar 

  9. Yamamoto M, Kure S, Engel JD, Hiraga K (1988) Structure, turnover, and heme-mediated suppression of the level of mRNA encoding rat liver delta-aminolevulinate synthase. J Biol Chem 263:15973–15979

    PubMed  CAS  Google Scholar 

  10. Kolluri S, Sadlon TJ, May BK, Bonkovsky HL (2005) Haem repression of the housekeeping 5-Aminolevulinic acid synthase gene in the hepatoma cell line LMH. Biochem J 392:173–180. doi:10.1042/BJ20050354

    Article  PubMed  CAS  Google Scholar 

  11. Hamilton JW, Bement WJ, Sinclair PR, Sinclair JF, Alcedo JA, Wetterhahn KE (1991) Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch Biochem Biophys 289:387–392. doi:10.1016/0003-9861(91)90428-L

    Article  PubMed  CAS  Google Scholar 

  12. Cable EE, Cable JW, Bonkovsky HL (1993) Repression of hepatic delta-aminolevulinate synthase by heme and metalloporphyrins: relationship to inhibition of heme oxygenase. Hepatology 18:119–127

    Article  PubMed  CAS  Google Scholar 

  13. Cable EE, Pepe JA, Karamitsios NC, Lambrecht RW, Bonkovsky HL (1994) Differential effects of metalloporphyrins on messenger RNA levels of delta-aminolevulinate synthase and heme oxygenase Studies in cultured chick embryo liver cells. J Clin Invest 94:649–654. doi:10.1172/JCI117381

    Article  PubMed  CAS  Google Scholar 

  14. Drew PD, Ades IZ (1989) Regulation of the stability of chicken embryo liver delta-aminolevulinate synthase mRNA by hemin. Biochem Biophys Res Commun 162:102–107. doi:10.1016/0006-291X(89)91968-2

    Article  PubMed  CAS  Google Scholar 

  15. Cable EE, Miller TG, Isom HC (2000) Regulation of heme metabolism in rat hepatocytes and hepatocyte cell lines: delta-aminolevulinic acid synthase and heme oxygenase are regulated by different heme-dependent mechanisms. Arch Biochem Biophys 384:280–295. doi:10.1006/abbi.2000.2117

    Article  PubMed  CAS  Google Scholar 

  16. Dailey TA, Woodruff JH, Dailey HA (2005) Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem J 386:381–386. doi:10.1042/BJ20040570

    Article  PubMed  CAS  Google Scholar 

  17. Munakata H, Sun JY, Yoshida K, Nakatani T, Honda E, Hayakawa S et al (2004) Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase. J Biochem 136:233–238. doi:10.1093/jb/mvh112

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto M, Hayashi N, Kikuchi G (1983) Translational inhibition by heme of the synthesis of hepatic delta-aminolevulinate synthase in a cell-free system. Biochem Biophys Res Commun 115:225–231. doi:10.1016/0006-291X(83)90993-2

    Article  PubMed  CAS  Google Scholar 

  19. Hayashi N, Watanabe N, Kikuchi G (1983) Inhibition by hemin of in vitro translocation of chicken liver delta-aminolevulinate synthase into mitochondria. Biochem Biophys Res Commun 115:700–706. doi:10.1016/S0006-291X(83)80201-0

    Article  PubMed  CAS  Google Scholar 

  20. Bonkovsky HL (1987) Porphyria: practical advice for the clinical gastroenterologist and hepatologist. Dig Dis 5:179–192

    Article  PubMed  CAS  Google Scholar 

  21. Bloomer JR, Bonkovsky HL (1989) The porphyrias. Dis Mon 35:1–54. doi:10.1016/0011-5029(89)90003-5

    PubMed  CAS  Google Scholar 

  22. Simionatto CS, Cabal R, Jones L, Galbraith RA (1988) Thrombophlebitis and disturbed hemostasis following administration of intravenous hematin in normal volunteers. Am J Med 85:538–540

    Article  PubMed  CAS  Google Scholar 

  23. Goetsch CA, Bissell DM (1986) Instability of hematin used in the treatment of hepatic porphyria. N Engl J Med 315:235–238

    PubMed  CAS  Google Scholar 

  24. Morris DL, Dudley MD, Pearson RD (1981) Coagulopathy associated with hematin treatment for acute intermittent porphyria. Ann Intern Med 95:700–701

    PubMed  CAS  Google Scholar 

  25. Peterson JM, Pierach CA (1984) Hematin induced hemolysis in acute porphyria. Ann Intern Med 101:877

    Google Scholar 

  26. Dhar GJ, Bossenmaier I, Cardinal R, Petryka ZJ, Watson CJ (1978) Transitory renal failure following rapid administration of a relatively large amount of hematin in a patient with acute intermittent porphyria in clinical remission. Acta Med Scand 203:437–443

    PubMed  CAS  Google Scholar 

  27. Khanderia U (1986) Circulatory collapse associated with hemin therapy for acute intermittent porphyria. Clin Pharm 5:690–692

    PubMed  CAS  Google Scholar 

  28. Bonkovsky HL (1993) Advances in understanding and treating ‘the little imitator’, acute porphyria. Gastroenterology 105:590–594

    PubMed  CAS  Google Scholar 

  29. Cable EE, Gildemeister OS, Pepe JA, Donohue SE, Lambrecht RW, Bonkovsky HL (1996) Hepatic 5-aminolevulinic acid synthase mRNA stability is modulated by inhibitors of heme biosynthesis and by metalloporphyrins. Eur J Biochem 240:112–117. doi:10.1111/j.1432-1033.1996.0112h.x

    Article  PubMed  CAS  Google Scholar 

  30. Russo SM, Pepe JA, Cable EE, Lambrecht RW, Bonkovsky HL (1994) Repression of ALA synthase by heme and zinc-mesoporphyrin in a chick embryo liver cell culture model of acute porphyria. Eur J Clin Invest 24:406–415. doi:10.1111/j.1365-2362.1994.tb02184.x

    Article  PubMed  CAS  Google Scholar 

  31. Bonkovsky HL (1990) Porphyrin and heme metabolism and the porphyrias. In: Zakim D, Boyer TD (eds) Hepatology a textbook of liver disease, 2nd edn. Saunders Philadelphia, pp 378–424

  32. Sinclair PR, Granick S (1975) Heme control on the synthesis of delta-aminolevulinic acid synthetase in cultured chick embryo liver cells. Ann NY Acad Sci 244:509–520. doi:10.1111/j.1749-6632.1975.tb41551.x

    Article  PubMed  CAS  Google Scholar 

  33. Granick S, Sinclair P, Sassa S, Grieninger G (1975) Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J Biol Chem 250:9215–9225

    PubMed  CAS  Google Scholar 

  34. Shan Y, Lambrecht RW, Bonkovsky HL (2004) Identification of key elements that are responsible for heme-mediated induction of the avian heme oxygenase-1 gene. Biochim Biophy Acta 1679:87–94

    CAS  Google Scholar 

  35. Shan Y, Lambrecht RW, Ghaziani T, Donohue SE, Bonkovsky HL (2004) Role of Bach-1 in regulation of heme oxygenase-1 in human liver cells: insights from studies with small interfering RNAs. J Biol Chem 279:51769–51774. doi:10.1074/jbc.M409463200

    Article  PubMed  CAS  Google Scholar 

  36. Shan Y, Lambrecht RW, Donohue SE, Bonkovsky HL (2006) Role of Bach1 and Nrf2 in up-regulation of the heme oxygenase-1 gene by cobalt protoporphyrin. FASEB J 20:2651–2653. doi:10.1096/fj.06-6346fje

    Article  PubMed  CAS  Google Scholar 

  37. Ghaziani T, Shan Y, Lambrecht RW, Donohue SE, Pietschmann T, Bartenschlager R et al (2006) HCV proteins increase expression of heme oxygenase-1 (HO-1) and decrease expression of Bach1 in human hepatoma cells. J Hepatol 45:5–12. doi:10.1016/j.jhep.2005.12.020

    Article  PubMed  CAS  Google Scholar 

  38. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K et al (2002) CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 10:1519–1526. doi:10.1016/S1097-2765(02)00784-0

    Article  PubMed  CAS  Google Scholar 

  39. Yamauchi K, Hayashi N, Kikuchi G (1980) Translocation of delta-aminolevulinate synthase from the cytosol to the mitochondria and its regulation by hemin in the rat liver. J Biol Chem 255:1746–1751

    PubMed  CAS  Google Scholar 

  40. Igarashi J, Hayashi N, Kikuchi G (1978) Effects of administration of cobalt chloride and cobalt protoporphyrin on delta-aminolevulinate synthase in rat liver. J Biochem 84:997–1000

    PubMed  CAS  Google Scholar 

  41. Gardner FH (1953) The use of cobaltous chloride in the anemia associated with chronic renal disease. J Lab Clin Med 41:182–198

    Google Scholar 

  42. Galbraith RA, Kappas A (1991) Cobalt protoporphyrin regulates body weight in beagle dogs: induction of weight loss in normal animals of stable adult weight. Pharmacology 43:96–105. doi:10.1159/000138834

    Article  PubMed  CAS  Google Scholar 

  43. Galbraith RA, Kappas A (1991) Intracerebroventricular administration of cobalt protoporphyrin elicits prolonged weight reduction in rats. Am J Physiol 261:R1395–R1401

    PubMed  CAS  Google Scholar 

  44. Galbraith RA, Kappas A (1991) Regulation of food intake and body weight in rats by the synthetic heme analogue cobalt protoporphyrin. Am J Physiol 261:R1388–R1394

    PubMed  CAS  Google Scholar 

  45. Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH et al (2005) Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell 122:505–515. doi:10.1016/j.cell.2005.06.040

    Article  PubMed  CAS  Google Scholar 

  46. Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735

    PubMed  CAS  Google Scholar 

  47. Bonkowsky HL, Collins A, Doherty HM, Tschudy DP (1973) The glucose effect in rat liver: studies of delta-aminolaevulinate synthase and tyrosine aminotransferase. Biochim Biophys Acta 320:561–576

    PubMed  CAS  Google Scholar 

  48. Green D, Reynolds N, Klein J, Kohl H, Ts’ao CH (1983) The inactivation of hemostatic factors by hematin. J Lab Clin Med 102:361–369

    PubMed  CAS  Google Scholar 

  49. Jones RL (1986) Hematin-derived anticoagulant Generation in vitro and in vivo. J Exp Med 163:724–739. doi:10.1084/jem.163.3.724

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by United States Public Health Service Grants RO1-DK38825 and contracts NO-1 DK92326 and UO-1 DK065193. Authors thank Dr. Henry M. Furneaux (Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT) for helpful comments and discussion, Dr. John A. Watts (Carolinas Medical Center, Charlotte, NC) for suggestions, and Dr. Rixin Wang (Yale Center for Medical Informatics, New Haven, CT) for statistical assistance in the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert L. Bonkovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Shan, Y., Lambrecht, R.W. et al. Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin. Mol Cell Biochem 319, 153–161 (2008). https://doi.org/10.1007/s11010-008-9888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9888-0

Keywords

Navigation