Skip to main content
Log in

Partial dissociation of TSC2 and mTOR phosphorylation in cardiac and skeletal muscle of rats in vivo

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Insulin promotes protein accretion in cardiac and skeletal muscles through a stimulation of the mRNA translation initiation phase of protein synthesis. The present set of experiments examined the regulatory TSC2 signaling pathway that potentially contributes to the myocardial responsiveness of protein synthesis to insulin in post-absorptive male Sprague-Dawley rats in vivo. Heart and skeletal muscles were sampled from rats up to 1 h following intravenous injection of various doses of insulin. In cardiac muscle, TSC2 phosphorylation was elevated only at the highest plasma insulin concentration (386 ng/ml). In contrast, the extent of mTOR phosphorylation either on Ser(2448) or Ser(2481) was raised at 24-fold less concentration of insulin and corresponded with increased phosphorylation of PKB(Thr308) or PKB(Ser473). In gastrocnemius, TSC2 phosphorylation was elevated at plasma insulin concentrations (16 ng/ml) lower than that observed in cardiac muscle (386 ng insulin/ml). The increased TSC2 phosphorylation corresponded with a marked stimulation of PKB phosphorylation. However, mTOR(Ser2448) or mTOR(Ser2481) phosphorylation was not elevated until the plasma insulin concentration reached 97 ng/ml. The results indicate there is a dissociation of TSC2 and mTOR phosphorylation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Balage M, Sinaud S, Prod’Homme M et al (2001) Amino acids and insulin are both required to regulate assembly of eIF4E·eIF4G complex in rat skeletal muscle. Am J Physiol Endocrinol Metab 281:E565–E574

    PubMed  CAS  Google Scholar 

  2. Anthony JC, Lang CH, Crozier SJ et al (2002) Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am J Physiol Endocrinol Metab 282:E1092–E1101

    PubMed  CAS  Google Scholar 

  3. Tee AR, Fingar DC, Manning BD et al (2002) Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99:13571–13576. doi:10.1073/pnas.202476899

    Article  PubMed  CAS  Google Scholar 

  4. van Slegtenhorst M, Nellist M, Nagelkerken B et al (1998) Interaction between humartrin and tuberlin, the TSC1 and TSC2 gene products. Hum Mol Genet 7:1053–1057. doi:10.1093/hmg/7.6.1053

    Article  PubMed  Google Scholar 

  5. Garami A, Zwartkruis FJT, Nobukuni T et al (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and TSC2. Mol Cell 11:1457–1466. doi:10.1016/S1097-2765(03)00220-X

    Article  PubMed  CAS  Google Scholar 

  6. Inoki K, Li Y, Zhu T et al (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657. doi:10.1038/ncb839

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Y, Gao X, Saucedo L et al (2003) Rheb is a direct target of the tuberous sclerosis tumor supressor proteins. Nat Cell Biol 5:578–581. doi:10.1038/ncb999

    Article  PubMed  CAS  Google Scholar 

  8. Dan HC, Sun M, Yang L et al (2002) Phosphotidylinositol 3-kinase/AKT pathway regulates tuberous sclerosis tumor supressor complex by phosphorylation of tuberin. J Biol Chem 277:35364–35370. doi:10.1074/jbc.M205838200

    Article  PubMed  CAS  Google Scholar 

  9. Manning BD, Tee AR, Logsdon MN et al (2002) Identification of the tuberous sclerosis complex-2 tumor supressor gene product tuberlin as a target of the phosphoinositide 3-kinase/Akt pathway. Mol Cell 10:151–162. doi:10.1016/S1097-2765(02)00568-3

    Article  PubMed  CAS  Google Scholar 

  10. Vary TC, Lang CH (2005) IGF-I activates the eIF4F system in cardiac muscle in vivo. Mol Cell Biochem 272:209–220. doi:10.1007/s11010-005-7551-6

    Article  PubMed  CAS  Google Scholar 

  11. Vary TC, Lynch CJ (2006) Meal feeding stimulates phosphorylation of multiple effector proteins regulating protein synthetic processes in rat hearts. J Nutr 136:2284–2290

    PubMed  CAS  Google Scholar 

  12. Vary TC, Lynch CJ (2006) Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation. Am J Physiol Endocrinol Metab 290:E631–E642. doi:10.1152/ajpendo.00460.2005

    Article  PubMed  CAS  Google Scholar 

  13. Jefferson LS, Vary TC, Kimball SR (2001) Regulation of protein metabolism in muscle. In: Jefferson LS, Cherrington AD (eds) Handbook of physiology. Oxford University Press, New York, pp 529–552

    Google Scholar 

  14. Brown EJ, Beal PA, Keith CT et al (1995) Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature 377:441–446. doi:10.1038/377441a0

    Article  PubMed  CAS  Google Scholar 

  15. Raught B, Gingas A-C, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98:7037–7044. doi:10.1073/pnas.121145898

    Article  PubMed  CAS  Google Scholar 

  16. Sekulic A, Hudson CC, Homme JL et al (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60:3504–3513

    PubMed  CAS  Google Scholar 

  17. Peterson RT, Beal PA, Comb MJ et al (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423. doi:10.1074/jbc.275.10.7416

    Article  PubMed  CAS  Google Scholar 

  18. Vary TC, Lynch CJ (2005) Nutrient signaling to muscle and adipose tissue by leucine. In: Zempleni J, Dakshinamirti K (eds) Nutrient and cell signaling. CRC Press, Boca Raton, FL, pp 299–352

    Google Scholar 

  19. Vary TC, Lynch CJ (2007) Nutrient signaling components controlling protein synthesis in striated muscle. J Nutr 137:1835–1843

    PubMed  CAS  Google Scholar 

  20. Vary TC, Deiter G, Lynch CJ (2007) Rapamycin limits formation of active eukaryotic initiation factor 4F complex following meal feeding in rat hearts. J Nutr 137:1857–1862

    PubMed  CAS  Google Scholar 

  21. Bolster DR, Vary TC, Kimball SR et al (2004) Leucine regulates translation initiation in rat skeletal muscle via enhanced eIF4G phosphorylation. J Nutr 134:1704–1710

    PubMed  CAS  Google Scholar 

  22. Nave BT, Owens M, Withers DJ et al (1999) Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344:427–431. doi:10.1042/0264-6021:3440427

    Article  PubMed  CAS  Google Scholar 

  23. Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182:31–42. doi:10.1023/A:1006823109415

    Article  PubMed  CAS  Google Scholar 

  24. Potter CJ, Pedrazza LG, Xu T (2002) AKT regulates growth by directly phosphorylating TSC2. Nat Cell Biol 4:658–662. doi:10.1038/ncb840

    Article  PubMed  CAS  Google Scholar 

  25. Vary TC, Deiter G, Lantry R (2007) Chronic alcohol feeding impairs mTOR(Ser2448) phosphorylation in rat hearts. Alcohol Clin Exp Res 31:43–51. doi:10.1111/j.1530-0277.2006.00285.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Institute on Alcohol Abuse and Alcoholism grant AA-12814 and National Institute General Medical Sciences GM-39277. We thank Dr. Christopher Lynch at Penn State University College of Medicine for kindly assessing plasma insulin concentrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. Vary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsyth, S., Vary, T.C. Partial dissociation of TSC2 and mTOR phosphorylation in cardiac and skeletal muscle of rats in vivo. Mol Cell Biochem 319, 141–151 (2008). https://doi.org/10.1007/s11010-008-9887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9887-1

Keywords

Navigation