Skip to main content
Log in

Expression, purification, and reconstitution of the Na+/H+ exchanger sod2 in Saccharomyces cerevisiae

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sod2, is a Na+/H+ exchanger present on the cytoplasmic membrane of the fission yeast Schizosaccharomyces pombe. It expels toxic Na+ from the cytosol. Sod2 was expressed in Saccharomyces cerevisiae with a C-terminal histidine tag under control of the GAL1 promoter. Western blots using anti-V5 antibodies identified the tagged protein. Solubilization of the protein was by n-dodecyl β-d-maltoside. Immobilized Ni-ion column affinity chromatography partially purified the protein at a yield of ~240 μg per liter of culture. Sod2 was present as a 40-kDa and an 80-kDa protein, however, it co-purified with a number of other proteins. Cross linking of sod2 with N,N′-(o-phenylene)dimaleimide showed that sod2 was present in association with a number of other proteins as a larger molecular weight complex. Partially purified sod2 protein was reconstituted in proteoliposomes and functionally active. Our results suggest that the sod2 protein associates with a number of other proteins and can be expressed in S. cerevisiae in active form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DDM:

n-dodecyl β-d-maltoside

DSS:

Disuccinimidyl suberate

o-PDM:

N,N′-(o-phenylene)dimaleimide

References

  1. Wiebe CA, DiBattista ER, Fliegel L (2001) Functional role of amino acid residues in Na+/H+ exchangers. Biochem J 357:1–10. doi:10.1042/0264-6021:3570001

    Article  PubMed  CAS  Google Scholar 

  2. Slepkov ER, Rainey JK, Sykes BD, Fliegel L (2007) Structural and functional analysis of the Na(+)/H(+) exchanger. Biochem J 401:623–633. doi:10.1042/BJ20061062

    Article  PubMed  CAS  Google Scholar 

  3. Jia Z-P, McCullough N, Martel R, Hemmingsen S et al (1992) Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J 11:1631–1640

    PubMed  CAS  Google Scholar 

  4. Dibrov P, Young PG, Fliegel L (1998) Functional analysis of amino acid residues essential for activity in the Na+/H+ exchanger of fission yeast. Biochemistry 36:8282–8288. doi:10.1021/bi9801457

    Article  Google Scholar 

  5. Dibrov P, Fliegel L (1998) Comparative molecular analysis of Na+/H+ exchangers: a unified model for Na+/H+ antiport? FEBS Lett 424:1–5. doi:10.1016/S0014-5793(98)00119-7

    Article  PubMed  CAS  Google Scholar 

  6. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  PubMed  CAS  Google Scholar 

  7. Korepanova A, Gao FP, Hua Y, Qin H et al (2005) Cloning and expression of multiple integral membrane proteins from Mycobacterium tuberculosis in Escherichia coli. Protein Sci 14:148–158. doi:10.1110/ps.041022305

    Article  PubMed  CAS  Google Scholar 

  8. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298. doi:10.1006/jmbi.1996.0399

    Article  PubMed  CAS  Google Scholar 

  9. Flegelova H, Haguenauer-Tsapis R, Sychrova H (2006) Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae. Biochim Biophys Acta 1760:504–516

    PubMed  CAS  Google Scholar 

  10. Flegelova H, Sychrova H (2005) Mammalian NHE2 Na(+)/H+ exchanger mediates efflux of potassium upon heterologous expression in yeast. FEBS Lett 579:4733–4738

    Article  PubMed  CAS  Google Scholar 

  11. Montero-Lomeli M, Okorokova Facanha AL (1999) Expression of a mammalian Na+/H+ antiporter in Saccharomyces cerevisiae. Biochem Cell Biol 77:25–31. doi:10.1139/bcb-77-1-25

    Article  PubMed  CAS  Google Scholar 

  12. Sekler I, Kopito R, Casey JR (1995) High level expression, partial purification, and functional reconstitution of the human AE1 anion exchanger in Saccharomyces cerevisiae. J Biol Chem 270:21028–21034. doi:10.1074/jbc.270.19.11251

    Article  PubMed  CAS  Google Scholar 

  13. Silva NLCL, Haworth RS, Singh D, Fliegel L (1995) The Carboxyl-terminal region of the Na+/H+ exchanger interacts with mammalian heat shock protein. Biochemistry 34:10412–10420. doi:10.1021/bi00033a013

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura N, Tanaka S, Teko Y, Mitsui K et al (2005) Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem 280:1561–1572. doi:10.1074/jbc.M410041200

    Article  PubMed  CAS  Google Scholar 

  15. Venema K, Gibrat R, Grouzis JP, Grignon C (1993) Quantitative measurement of cationic fluxes, selectivity and membrane potential using liposomes multilabelled with fluorescent probes. Biochim Biophys Acta 1146:87–96. doi:10.1016/0005-2736(93)90342-W

    Article  PubMed  CAS  Google Scholar 

  16. Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277:2413–2418. doi:10.1074/jbc.M105043200

    Article  PubMed  CAS  Google Scholar 

  17. Wiebe CA, Rieder C, Young PG, Dibrov P et al (2003) Functional analysis of amino acids of the Na+/H+ exchanger that are important for proton translocation. Mol Cell Biochem 254:117–124. doi:10.1023/A:1027311916247

    Article  PubMed  CAS  Google Scholar 

  18. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901. doi:10.1073/pnas.120170197

    Article  PubMed  CAS  Google Scholar 

  19. Lenoir G, Menguy T, Corre F, Montigny C et al (2002) Overproduction in yeast and rapid and efficient purification of the rabbit SERCA1a Ca(2+)-ATPase. Biochim Biophys Acta 1560:67–83. doi:10.1016/S0005-2736(01)00458-8

    Article  PubMed  CAS  Google Scholar 

  20. Jahn T, Dietrich J, Andersen B, Leidvik B et al (2001) Large scale expression, purification and 2D crystallization of recombinant plant plasma membrane H+-ATPase. J Mol Biol 309:465–476. doi:10.1006/jmbi.2001.4688

    Article  PubMed  CAS  Google Scholar 

  21. Fliegel L, Haworth RS, Dyck JRB (1993) Characterization of the placental brush border membrane Na+/H+ exchanger: Identification of thiol-dependent transitions in apparent molecular size. Biochem J 289:101–107

    PubMed  CAS  Google Scholar 

  22. Fafournoux P, Noel J, Pouysségur J (1994) Evidence that Na+/H+ exchanger isoforms NHE1 and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J Biol Chem 269:2589–2596

    PubMed  CAS  Google Scholar 

  23. Moncoq K, Kemp G, Li X, Fliegel L et al (2008) Dimeric structure of human Na+/H+ exchanger isoform 1 overproduced in Saccharomyces cerevisiae. J Biol Chem 283:4145–4154. doi:10.1074/jbc.M704844200

    Article  PubMed  CAS  Google Scholar 

  24. Mitsui K, Yasui H, Nakamura N, Kanazawa H (2005) Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: implications for its antiporter activity. Biochim Biophys Acta 1720:125–136. doi:10.1016/j.bbamem.2005.11.005

    Article  PubMed  CAS  Google Scholar 

  25. Loster K, Baum O, Hofmann W, Reutter W (1995) Chemical cross-linking leads to two high molecular mass aggregates of rat alpha 1 beta 1 integrin differing in their conformation but not in their composition. FEBS Lett 373:234–238. doi:10.1016/0014-5793(95)01053-H

    Article  PubMed  CAS  Google Scholar 

  26. Green NS, Reisler E, Houk KN (2001) Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Sci 10:1293–1304. doi:10.1110/ps.51201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Heng Chen was supported by the CIHR Strategic Training Initiative in Membrane Proteins and Cardiovascular Disease and by NSERC of Canada. This research was supported by NSERC of Canada and LF is supported by an AHFMR Scientist award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Fliegel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Fliegel, L. Expression, purification, and reconstitution of the Na+/H+ exchanger sod2 in Saccharomyces cerevisiae . Mol Cell Biochem 319, 79–86 (2008). https://doi.org/10.1007/s11010-008-9879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9879-1

Keywords

Navigation