Skip to main content

Advertisement

Log in

Proteomic analysis of cardiac metabolic enzymes in asphyxiated newborn piglets

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypoxia/reoxygenation (H/R) creates an energetic deficiency in the heart, which may contribute to myocardial dysfunction. We hypothesized that H/R-induced impairment of cardioenergetic enzymes occurs in asphyxiated newborn animals. After hypoxia for 2 h (10–15% oxygen), newborn piglets were resuscitated with 100% oxygen for 1 h, followed by 21% oxygen for 3 h. Sham-operated control piglets had no H/R. Hemodynamic parameters in the piglets were continuously measured. At the end of experiment, hearts were isolated for proteomic analysis. In asphyxiated hearts, the level of isocitrate dehydrogenase and malate dehydrogenase was reduced compared to controls. Inverse correlations between the level of myocardial malate dehydrogenase and cardiac function were observed in the control, but not the H/R hearts. We conclude that reoxygenation of asphyxiated newborn piglets reduces the level of myocardial isocitrate dehydrogenase and malate dehydrogenase. While the cause is not clear, it may be related to the impaired tricarboxylic acid cycle pathway and energy production in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

H/R:

Hypoxia-reoxygenation

CO:

Cardiac output

MAP:

Mean arterial pressure

2DE:

Two-dimensional gel electrophoresis

MS:

Mass spectrometry

References

  1. World Health Organization (1991) Child health and development: health of the newborn. World Health Organization, Geneva, Switzerland

    Google Scholar 

  2. Shah P, Riphagen S, Beyene J, Perlman M (2004) Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89:152–155. doi:10.1136/adc.2002.023093

    Article  Google Scholar 

  3. Saugstad OD (1996) Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics 98:103–107

    PubMed  CAS  Google Scholar 

  4. Fert-Bober J, Saini A, Cheung P-Y Sawicki G (2007) Myosin light chain-1 and -2 in the reoxygenated neonatal heart following asphyxia. In: Affolter M, Lashuel H, Lion N, Moniatte M, Palagi PM, Quadroni M, Sanchez JC (eds) Proteomics pushing the limits, Geneva, Switzerland, pp 70–74. ISBN: 2-9700405-3-0

  5. Saini A, Udenberg T, Fert-Bober J, Robichaud S, Lalu M, Schulz R, et al (2007) Myocardial protein changes during endotoxemia. In: Affolter M, Lashuel H, Lion N, Moniatte M, Palagi PM, Quadroni M, Sanchez JC (eds) Proteomics pushing the limits, Geneva, Switzerland, pp 121–125. ISBN: 2-9700405-3-0

  6. Haase E, Bigam DL, Nakonechny QB, Jewell LD, Korbutt G, Cheung PY (2004) Resuscitation with 100% oxygen causes intestinal glutathione oxidation and reoxygenation injury in asphyxiated newborn piglets. Ann Surg 240:364–373. doi:10.1097/01.sla.0000133348.58450.e4

    Article  PubMed  Google Scholar 

  7. Al-Salam Z, Johnson S, Abozaid S, Bigam D, Cheung PY (2007) The hemodynamic effects of dobutamine during reoxygenation after hypoxia: a dose-response study in newborn pigs. Shock 28:317–325. doi:10.1097/shk.0b013e318048554a

    Article  PubMed  CAS  Google Scholar 

  8. Passonneau JV, Lowry OH (1993) Enzymatic analysis: a practical guide. Humana Press, Totowa NJ

    Google Scholar 

  9. Kennergren C, Mantovani V, Strindberg L, Berglin E, Hamberger A, Lönnroth P (2003) Myocardial interstitial glucose and lactate before, during, and after cardioplegic heart arrest. Am J Physiol Endocrinol Metab 284:788–784

    Google Scholar 

  10. Sawicki G, Dakour J, Morrish DW (2003) Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences. Proteomics 3:2044–2041. doi:10.1002/pmic.200300537

    Article  PubMed  CAS  Google Scholar 

  11. Sawicki G, Jugdutt BI (2004) Detection of regional changes in protein levels in the in vivo canine model of acute heart failure following ischemia-reperfusion injury. Functional proteomics studies. Proteomics 4:2195–2202. doi:10.1002/pmic.200300746

    Article  PubMed  CAS  Google Scholar 

  12. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3557. doi:10.1002/(SICI)1522-2683(19991201)20:18≤3551::AID-ELPS3551≥3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  13. Lopaschuk GD, Collins Nakai RL, Itoi T (1992) Developmental changes in energy substrate use by the heart. Cardiovasc Res 26:1172–1180. doi:10.1093/cvr/26.12.1172

    Article  PubMed  CAS  Google Scholar 

  14. Onay-Besikci A (2006) Regulation of cardiac energy metabolism in newborn. Mol Cell Biochem 287:1–11. doi:10.1007/s11010-006-9123-9

    Article  PubMed  CAS  Google Scholar 

  15. Bartelds B, Knoester H, Beaufort-Krol GC, Smid GB, Takens J, Zijlstra WG et al (1999) Myocardial lactate metabolism in fetal and newborn lambs. Circulation 99:1892–1897

    PubMed  CAS  Google Scholar 

  16. Bartelds B, Gratama JW, Knoester H, Takens J, Smid GB, Aarnoudse JG et al (1998) Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs. Am J Physiol Heart Circ Physiol 274:1962–1969

    Google Scholar 

  17. Kodde IK, van der Stok J, Smolenski RT, Jong JW (2007) Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol 146:26–29. doi:10.1016/j.cbpa.2006.09.014

    Article  PubMed  Google Scholar 

  18. Piazza AJ (1999) Postasphyxial management of the newborn. Clin Perinatol 26:749–745

    PubMed  CAS  Google Scholar 

  19. Kohman LJ, Veit LJ (1991) Neonatal myocardium resists reperfusion injury. J Surg Res 51:133–137. doi:10.1016/0022-4804(91)90083-X

    Article  PubMed  CAS  Google Scholar 

  20. Ostadalová I, Ostadal B, Kolar F, Parratt JR, Wilson S (1998) Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865. doi:10.1006/jmcc.1998.0653

    Article  PubMed  Google Scholar 

  21. Ostadal B, Ostadalova I, Dhalla NS (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 79:635–639

    PubMed  CAS  Google Scholar 

  22. Barnett CP, Perlman M, Ekert PG (1997) Clinicopathological correlations in postasphyxial organ damage: a donor organ perspective. Pediatrics 99:797–799. doi:10.1542/peds.99.6.797

    Article  PubMed  CAS  Google Scholar 

  23. Martin-Ancel A, Garcia-Alix A, Gaya F, Cabanas F, Burgueros M, Quero J (1995) Multiple organ involvement in perinatal asphyxia. J Pediatr 127:786–793. doi:10.1016/S0022-3476(95)70174-5

    Article  PubMed  CAS  Google Scholar 

  24. Hansford RG (1987) Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes. Biochem J 241:145–151

    PubMed  CAS  Google Scholar 

  25. Gabriel JL, Zervos PR, Plaut GWE (1986) Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metab Clin Exp 35:661–667

    PubMed  CAS  Google Scholar 

  26. Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO et al (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176. doi:10.1074/jbc.M010120200

    Article  PubMed  CAS  Google Scholar 

  27. Lee JH, Yang ES, Park JW (2003) Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite: implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 278:51360–51361. doi:10.1074/jbc.M302332200

    Article  PubMed  CAS  Google Scholar 

  28. Yang JH, Yang ES, Park JW (2004) Inactivation of NADP+-dependent isocitrate dehydrogenase by lipid peroxidation products. Free Radic Res 38:241–249. doi:10.1080/10715760310001657712

    Article  PubMed  CAS  Google Scholar 

  29. Das UN (1999) Essential fatty acids, lipid peroxidation and apoptosis. Prostaglandins Leukot Essent Fatty Acids 61:157–153. doi:10.1054/plef.1999.0085

    Article  PubMed  CAS  Google Scholar 

  30. Sharma AB, Sun J, Howard LL, Williams AG, Mallet TR (2007) Oxidative stress reversibly inactivates myocardial enzymes during cardiac arrest. Am J Physiol Heart Circ Physiol 292:198–206. doi:10.1152/ajpheart.00698.2006

    Article  Google Scholar 

  31. Finley JP, Howman-Giles RB, Gilday DL, Bloom KR, Rowe RD (1979) Transient myocardial ischemia of the newborn infant demonstrated by thallium myocardial imaging. J Pediatr 94:263–270. doi:10.1016/S0022-3476(79)80841-0

    Article  PubMed  CAS  Google Scholar 

  32. Lee JH, Yang ES, Park JW (2001) Inactivation of NADP+-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie 83:1057–1065. doi:10.1016/S0300-9084(01)01351-7

    Article  PubMed  CAS  Google Scholar 

  33. Eaton P, Byers HL, Leeds N, Ward MA, Shattock MJ (2002) Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 277:9806–9811. doi:10.1074/jbc.M111454200

    Article  PubMed  CAS  Google Scholar 

  34. Bloos FM, Morisaki HM, Neal AM, Martin CM, Ellis CG, Sibbald WJ, Ml Pitt (1996) Sepsis depresses the metabolic oxygen reserve of the coronary circulation in mature sheep. Am J Respir Crit Care Med 153:1577–1584

    PubMed  CAS  Google Scholar 

  35. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543–1549. doi:10.1161/01.CIR.0000028818.33488.7B

    Article  PubMed  CAS  Google Scholar 

  36. Cheung PY, Sawicki G, Wozniak M, Wang W, Radomski MW, Schulz R (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839

    PubMed  CAS  Google Scholar 

  37. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury. Circulation 112:544–552. doi:10.1161/CIRCULATIONAHA.104.531616

    Article  PubMed  CAS  Google Scholar 

  38. Haase E, Bigam DL, Nakonechny QB, Rayner D, Korbutt G, Cheung PY (2005) Cardiac function, myocardial glutathione, and matrix metalloproteinase-2 levels in hypoxic newborn pigs reoxygenated by 21%, 50% or 100% oxygen. Shock 23:383–389. doi:10.1097/01.shk.0000158962.83529.ce

    Article  PubMed  CAS  Google Scholar 

  39. Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79:940–948

    PubMed  CAS  Google Scholar 

  40. Walther FJ, Siassi B, Ramadau NA, Wu PY (1985) Cardiac output in newborn infants with transient myocardial dysfunction. J Pediatr 107:781–785. doi:10.1016/S0022-3476(85)80417-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was funded by operating grants from the Canadian Institute of Health Research. GS is an investigator supported by the Heart and Stroke Foundation of Canada. PYC is an investigator supported by the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research. GDL is a senior scientist of the Alberta Heritage Foundation for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Yin Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fert-Bober, J., Sawicki, G., Lopaschuk, G.D. et al. Proteomic analysis of cardiac metabolic enzymes in asphyxiated newborn piglets. Mol Cell Biochem 318, 13–21 (2008). https://doi.org/10.1007/s11010-008-9852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9852-z

Keywords

Navigation