Skip to main content
Log in

Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It has been recently reported that release of erythropoietin could mediate the cardioprotective effects of remote renal preconditioning. However, the mechanism of erythropoietin-mediated cardioprotection in remote preconditioning is still unexplored. Therefore, the present study was designed to investigate the possible signal transduction pathway of erythropoietin-mediated cardioprotection in remote preconditioning in rats. Remote renal preconditioning was performed by four episodes of 5 min renal artery occlusion followed by 5 min reperfusion. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120 min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. Extent of myocardial infarct size and coronary flow rate was also measured. Remote renal preconditioning and erythropoietin preconditioning (5,000 IUkg−1, i.p.) attenuated ischemia-reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of diethyldithiocarbamic acid (150 mg kg−1 i.p.), a selective NFkB inhibitor, and glibenclamide (5 mg kg−1 i.p.), a selective KATP channel blocker, attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning. However, administration of minoxidil (1 mg kg−1 i.v.), a selective KATP channel opener, restored the attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning in diethyldithiocarbamic acid pretreated rats. These results suggest that KATP channel is a downstream mediator of NFkB activation in remote preconditioning and erythropoietin preconditioning. Therefore, it may be concluded that erythropoietin preconditioning and remote renal preconditioning trigger similar signaling mechanisms for cardioprotection, i.e., NFkB activation followed by opening of KATP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EPO:

Erythropoietin

NFkB:

Nuclear factor kappa-B

DDCA:

Diethyldithiocarbamic acid

KH:

Kreb’s Henseleit

LDH:

Lactate dehydrogenase

CK:

Creatine kinase

RRPC:

Remote renal preconditioning

I/R:

ischemia-reperfusion

PEG 400:

Polyethylene glycol

2,4-DNPH:

2,4-Dinitrophenylhydrazine

References

  1. Przyklenk K, Baurer B, Ovize M et al (1993) Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899

    PubMed  CAS  Google Scholar 

  2. Singh M, Sharma A (2004) Mechanism of cardioprotective effect of remote aortic preconditioning. In: Dhalla NS, Angel RA, Pierce GN (eds) Pathophysiology of cardiovascular diseases. Kluwer Academic Publishers, Boston, pp 277–285

    Google Scholar 

  3. Tokuno S, Hinokiyama K, Tokuno K et al (2002) Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia. Arterioscler Thromb Vasc Biol 22:995–1001. doi:10.1161/01.ATV.0000017703.87741.12

    Article  PubMed  CAS  Google Scholar 

  4. Patel HH, Moore J, Hsu AK et al (2002) Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 34:1317–1323. doi:10.1006/jmcc.2002.2072

    Article  PubMed  CAS  Google Scholar 

  5. Wang YP, Xu H, Mizoguchi K et al (2001) Intestinal ischemia induces late preconditioning against myocardial infarction: a role for inducible nitric oxide synthase. Cardiovasc Res 9:391–398. doi:10.1016/S0008-6363(00)00266-2

    Article  CAS  Google Scholar 

  6. McClahan TB, Nao BS, Wolke LJ et al (1993) Brief renal occlusion and reperfusion reduces myocardial infarct size in rabbits. FASEB J 7:A118–A123

    Google Scholar 

  7. Skyschally A, Schulz R, Gres P et al (2003) Attenuation of ischemic preconditioning in pigs by scavenging of free radicals with ascorbic acid. Am J Physiol 284:H698–H703

    CAS  Google Scholar 

  8. Xia Z, Herijgers P, Nishida TS et al (2003) Remote preconditioning lessens the deterioration of pulmonary function after repeated coronary artery occlusion and reperfusion in sheep. Can J Anaesth 50:481–488

    PubMed  Google Scholar 

  9. Schott RJ, Rohmann S, Braun ER et al (1990) Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66:1133–1142

    PubMed  CAS  Google Scholar 

  10. Liauw SK, Rubin BB, Lindsay TF et al (1996) Sequential ischemia/reperfusion results in contralateral skeletal muscle salvage. Am J Physiol 270:H1407–H1413

    PubMed  CAS  Google Scholar 

  11. Loukogeorgakis SP, Donald A, Charakida M et al (2005) Remote ischemic preconditioning provides early and late protection against endothelial ischemia reperfusion injury in humans. J Am Coll Cardiol 46:450–456. doi:10.1016/j.jacc.2005.04.044

    Article  PubMed  CAS  Google Scholar 

  12. Diwan V, Jaggi AS, Singh M, Singh N, Singh D (2008) Possible involvement of erythropoietin in remote renal preconditioning induced cardioprotection in rats. J Cardiovasc Pharmacol 51:126–130

    PubMed  CAS  Google Scholar 

  13. Daghman NA, Elder GE, Savage GA et al (1999) Erythropoietin production: evidence for multiple oxygen sensing pathways. Ann Hematol 78:275–278. doi:10.1007/s002770050514

    Article  PubMed  CAS  Google Scholar 

  14. Kaelin WG Jr (2002) How oxygen makes its presence felt. Genes Dev 16:1441–1445. doi:10.1101/gad.1003602

    Article  PubMed  CAS  Google Scholar 

  15. Bohlius J, Weingart O, Trelle S et al (2006) Cancer-related anemia and recombinant human erythropoietin—an updated overview. Nat Clin Pract Oncol 3:152–164. doi:10.1038/ncponc0451

    Article  PubMed  CAS  Google Scholar 

  16. Sola A, Rogido M, Lee BH et al (2005) Erythropoietin after focal cerebral ischemia activates the janus kinase–signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res 57:481–487. doi:10.1203/01.PDR.0000155760.88664.06

    Article  PubMed  CAS  Google Scholar 

  17. Locatelli F, Alijama P, Barany P et al (2004) European best practice guidelines group. Revised European best practice guidelines for the management of anemia in patients with chronic renal failure. Nephrol Dial Transplant 19:1–47. doi:10.1093/ndt/gfg390

    Article  CAS  Google Scholar 

  18. Bianchi R, Buyukakilli B, Brines M et al (2004) Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci USA 101:823–828. doi:10.1073/pnas.0307823100

    Article  PubMed  CAS  Google Scholar 

  19. Sharples EJ, Patel N, Brown P et al (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15:2115–2124. doi:10.1097/01.ASN.0000135059.67385.5D

    Article  PubMed  CAS  Google Scholar 

  20. Bittorf T, Buchse T, Sasse T, Jaster R, Brock J (2001) Activation of the transcription factor NF-kappaB by the erythropoietin receptor: structural requirements and biological significance. Cell Signal 13:673–681. doi:10.1016/S0898-6568(01)00189-9

    Article  PubMed  CAS  Google Scholar 

  21. Liu X, Shen J, Jin Yi, Duan M, Xu J (2006) Recombinant human erythropoietin (rhEPO) preconditioning on nuclear factor-kappa B (NF-kB) activation & proinflammatory cytokines induced by myocardial ischaemia-reperfusion. Indian J Med Res 124:343–354

    PubMed  CAS  Google Scholar 

  22. Shi Y, Rafiee P, Su J, Pritchard KA Jr, Tweddell JS, Baker JE (2004) Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic Res Cardiol 99:173–182. doi:10.1007/s00395-004-0455-x

    Article  PubMed  CAS  Google Scholar 

  23. Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314. doi:10.1016/S0735-1097(01)01377-8

    Article  PubMed  CAS  Google Scholar 

  24. Kis A, Yellon DM, Baxter GF (2003) Role of nuclear factor-kappa B activation in acute ischemia-reperfusion injury in myocardium. Br J Pharmacol 138:894–900. doi:10.1038/sj.bjp. 0705108

    Article  PubMed  CAS  Google Scholar 

  25. Xuan YT, Tang XL, Banerjee S et al (1999) Nuclear factor KB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84:1095–1099

    PubMed  CAS  Google Scholar 

  26. Kant R, Diwan V, Jaggi AS, Singh N, Singh D (2008) Remote renal preconditioning-induced cardioprotection: a key role of hypoxia inducible factor-prolyl 4-hydroxylases. Mol Cell Biochem 312:25–31. doi:10.1007/s11010-008-9717-5

    Article  PubMed  CAS  Google Scholar 

  27. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148. doi:10.1038/305147a0

    Article  PubMed  CAS  Google Scholar 

  28. Kevelaitis E, Oubenaissa A, Peynet J, Mouas C, Menasche P (1999) Preconditioningby mitochondrial ATP-sensitive potassium channel openers: an effective approach for improving the preservation of heart transplants. Circulation 100:345–350

    CAS  Google Scholar 

  29. Cao CM, Gao QXQ, Chen M, Wong TM (2005) Calcium-activated potassium channel triggers cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther 312:644–650. doi:10.1124/jpet.104.074476

    Article  PubMed  CAS  Google Scholar 

  30. Kristiansen SB, Henning O, Kharbanda RK, Nielsen-Kudsk JE, Schmidt MR, Redington AN et al (2005) Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am J Physiol Heart Circ Physiol 288:H1252–H1256. doi:10.1152/ajpheart.00207.2004

    Article  PubMed  CAS  Google Scholar 

  31. Mabanta L, Valane P, Borne J, Frame MD (2006) Initiation of remote microvascularpreconditioning requires KATP channel activity. Am J Physiol Heart Circ Physiol 290:H264–H271. doi:10.1152/ajpheart.00455.2005

    Article  PubMed  CAS  Google Scholar 

  32. Pell TJ, Baxter GF, Yellon DM, Drew GM (1998) Renal ischaemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 275:H1542–H1547

    PubMed  CAS  Google Scholar 

  33. Langendorff O (1895) Untersuchungen amuber lebenderer saugethierherzen. Pfluger Arch Gesmate Physiolgie 61:291–332. doi:10.1007/BF01812150

    Article  Google Scholar 

  34. Chopra K, Singh M, Kaul N et al (1992) Decrease of myocardial infarct size with desferrioxamine: possible role of oxygen free radicals in its ameliorative effect. Mol Cell Biochem 113:71–76. doi:10.1007/BF00230887

    Article  PubMed  CAS  Google Scholar 

  35. King JA (1959) A routine method for estimation of lactate dehydrogenase activity. J Med Lab Technol 16:265–272

    PubMed  CAS  Google Scholar 

  36. Swanson JR, Wilkinson JH (1972) Measurements of creatine kinase in serum. Stand Methods Clin Chem 7:33

    CAS  Google Scholar 

  37. Mukundan H, Resta TC, Kanagy NL (2002) 17-Estradiol decreases hypoxic induction of erythropoietin gene expression. Am J Physiol 283:R496–R504

    CAS  Google Scholar 

  38. Müllenheim J, Molojavyi A, Preckel B et al (2001) Thiopentone does not block ischemic preconditioning in the isolated rat heart. Can J Anaesth 48:784–789

    Article  PubMed  Google Scholar 

  39. Egrie JC (1986) Characterization and biological effects of recombinant human erythropoietin. Immunobiology 172:213–224

    PubMed  CAS  Google Scholar 

  40. Sharma A, Singh M (2001) Protein kinase C activation and cardioprotective effect of preconditioning with oxidative stress in isolated rat heart. Mol Cell Biochem 219:1–6. doi:10.1023/A:1011038531656

    Article  PubMed  CAS  Google Scholar 

  41. Jaggi AS, Singh M, Sharma A, Singh S, Singh N (2007) Cardioprotective effects of mast cell modulators in ischemia-reperfusion-induced injury in rats. Methods Find Exp Clin Pharmacol 29:593–600

    PubMed  CAS  Google Scholar 

  42. Rehni AK, Shri R, Singh M (2007) Remote ischaemic preconditioning and prevention of cerebral injury. Indian J Exp Biol 45:247–252

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. Ashok Kumar Tiwary, Head, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India for supporting this study and providing technical facilities for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diwan, V., Kant, R., Jaggi, A.S. et al. Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem 315, 195–201 (2008). https://doi.org/10.1007/s11010-008-9808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9808-3

Keywords

Navigation