Skip to main content

Advertisement

Log in

Dysregulation of CREB binding protein triggers thrombin-induced proliferation of vascular smooth muscle cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thrombin is a potent mitogen for vascular smooth muscle cells (VSMCs). CBP has been regarded as a potential therapeutic target on the basis of its ability to affect cell growth. Therefore we hypothesized that CBP mediates thrombin-induced proliferation of VSMCs. We constructed recombinant adenoviral vector that expresses four short hairpin RNA (shRNA) targeting rat CBP mRNA (CBP-shRNA/Ad). VSMCs were infected with CBP-shRNA/Ad and treated with thrombin. CBP level were analyzed by quantitative real-time PCR and Western blot. To evaluate VSMC proliferation, the cell cycle and DNA synthesis were analyzed by flow cytometry and 3H-thymidine incorporation, respectively. CBP-shRNA/Ad infection inhibited thrombin-induced CBP expression in a dose-dependent manner concomitant with a decrease in the percentage of cells in the S phase and in DNA synthesis. These findings suggest that CBP plays a pivotal role in the S phase progression of VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McNamara CA, Sarembock IJ, Gimple LW et al (1993) Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 91:94–98. doi:10.1172/JCI116206

    Article  PubMed  CAS  Google Scholar 

  2. Nelken NA, Soifer SJ, O’Keefe J et al (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 90:1614–1621. doi:10.1172/JCI116031

    Article  PubMed  CAS  Google Scholar 

  3. Abendschein DR, Recchia D, Meng YY et al (1996) Inhibition of thrombin attenuates stenosis after arterial injury in minipigs. J Am Coll Cardiol 28:1849–1855. doi:10.1016/S0735-1097(96)00362-2

    Article  PubMed  CAS  Google Scholar 

  4. Sabri A, Short J, Guo J et al (2002) Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 91:532–539. doi:10.1161/01.RES.0000035242.96310.45

    Article  PubMed  CAS  Google Scholar 

  5. Darmoul D, Gratio V, Devaqd H et al (2003) Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol 162:1503–1513

    PubMed  CAS  Google Scholar 

  6. Rao GN, Delafontaine P, Runge MS et al (1995) Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem 270:27871–27875. doi:10.1074/jbc.270.34.20011

    Article  PubMed  CAS  Google Scholar 

  7. Rauch BH, Millette E, Kenagy RD et al (2004) Thrombin and factor Xa-induced DNA synthesis is mediated by transactivation of fibroblast growth factor receptor-1 in human vascular smooth muscle cells. Circ Res 94:340–345. doi:10.1161/01.RES.0000111805.09592.D8

    Article  PubMed  CAS  Google Scholar 

  8. Della Rocca GJ, Maudsley S, Daaka Y et al (1999) Pleiotropic coupling of G protein-coupled receptors to the mitogen-activated protein kinase cascade. Role of focal adhesions and receptor tyrosine kinases. J Biol Chem 274:13978–13984. doi:10.1074/jbc.274.20.13978

    Article  PubMed  CAS  Google Scholar 

  9. Tokunou T, Ichiki T, Takeda K et al (2001) cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21:1764–1769. doi:10.1161/hq2112.098770

    Article  PubMed  CAS  Google Scholar 

  10. Madamanchi NR, Li S, Patterson C et al (2001) Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem 276:18915–18924. doi:10.1074/jbc.M008802200

    Article  PubMed  CAS  Google Scholar 

  11. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    PubMed  CAS  Google Scholar 

  12. Sharma RV, Gurjar MV, Ramesh CB et al (2001) Selected contribution: estrogen receptor-alpha gene transfer inhibits proliferation and NF-kappaB activation in VSM cells from female rats. J Appl Physiol 91:2400–2406

    PubMed  CAS  Google Scholar 

  13. Rius J, Martínez-González J, Crespo J et al (2004) Involvement of neuron-derived orphan receptor-1 (NOR-1) in LDL-induced mitogenic stimulus in vascular smooth muscle cells: role of CREB. Arterioscler Thromb Vasc Biol 24:697–702. doi:10.1161/01.ATV.0000121570.00515.dc

    Article  PubMed  CAS  Google Scholar 

  14. Walcher D, Babidak C, Poletek P et al (2006) C-Peptide induces vascular smooth muscle cell proliferation: involvement of SRC-kinase, phosphatidylinositol 3-kinase, and extracellular signal-regulated kinase 1/2. Circ Res 99:1181–1187. doi:10.1161/01.RES.0000251231.16993.88

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Y, Sif S, Dewille J et al (2007) The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem 102:1256–1270. doi:10.1002/jcb.21356

    Article  PubMed  CAS  Google Scholar 

  16. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155. doi:10.1016/j.bcp.2004.03.045

    Article  PubMed  CAS  Google Scholar 

  17. Kawahara K, Kawabata H, Aratani S et al (2003) Hyper nuclear acetylation (HNA) in proliferation, differentiation and apoptosis. Ageing Res Rev 2:287–297. doi:10.1016/S1568-1637(03)00014-X

    Article  PubMed  CAS  Google Scholar 

  18. Tokunou T, Shibata R, Kai H et al (2003) Apoptosis induced by inhibition of cyclic AMP response element-binding protein in vascular smooth muscle cells. Circulation 108:1246–1252. doi:10.1161/01.CIR.0000085164.13439.89

    Article  PubMed  CAS  Google Scholar 

  19. Cao H, Dronadula N, Rao GN et al (2006) Thrombin induces expression of FGF-2 via activation of PI3K-Akt-Fra-1 signaling axis leading to DNA synthesis and motility in vascular smooth muscle cells. Am J Physiol Cell Physiol 290:172–182. doi:10.1152/ajpcell.00284.2005

    Article  Google Scholar 

  20. Kamei Y, Xu L, Heinzel T et al (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414. doi:10.1016/S0092-8674(00)81118-6

    Article  PubMed  CAS  Google Scholar 

  21. Chan HM, La Thangue NB (2001) p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 114:2363–2373

    PubMed  CAS  Google Scholar 

  22. Brehm A, Miska EA, McCance DJ et al (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:597–600. doi:10.1038/35404

    Article  PubMed  CAS  Google Scholar 

  23. Felzien LK, Farrell S, Betts JC et al (1999) Specificity of cyclin E-Cdk2, TFIIB, and E1A interactions with a common domain of the p300 coactivator. Mol Cell Biol 19:4241–4246

    PubMed  CAS  Google Scholar 

  24. Morris L, Allen KE, La Thangue NB et al (2000) Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP coactivators. Nat Cell Biol 12:232–239

    Google Scholar 

  25. Wang H, Larris B, Peiris TH et al (2007) C/EBPbeta activates E2F-regulated genes in vivo via recruitment of the coactivator CREB-binding protein/p300. J Biol Chem 282:24679–24688. doi:10.1074/jbc.M705066200

    Article  PubMed  CAS  Google Scholar 

  26. Lee CW, Sorensen TS, Shikama N et al (1998) Functional interplay between p53 and E2F through co-activator p300. Oncogene 16:2695–2710. doi:10.1038/sj.onc.1201818

    Article  PubMed  CAS  Google Scholar 

  27. Turnell AS, Stewart GS, Grand RJ et al (2005) The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438:690–695. doi:10.1038/nature04151

    Article  PubMed  CAS  Google Scholar 

  28. Missero C, Calautti E, Eckner R et al (1995) Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. Proc Natl Acad Sci USA 92:5451–5455. doi:10.1073/pnas.92.12.5451

    Article  PubMed  CAS  Google Scholar 

  29. Rajabi HN, Baluchamy S, Kolli S et al (2005) Effects of depletion of CREB-binding protein on c-Myc regulation and cell cycle G1-S transition. J Biol Chem 280:361–374

    PubMed  CAS  Google Scholar 

  30. Blobel GA (2000) CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 95:745–755

    PubMed  CAS  Google Scholar 

  31. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120. doi:10.1146/annurev.biochem.70.1.81

    Article  PubMed  CAS  Google Scholar 

  32. Blobel GA (2000) CBP and p300: versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol 71:545–556

    Google Scholar 

  33. Vo N, Goodman RH (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276:13505–13508

    PubMed  CAS  Google Scholar 

  34. Bandyopadhyay D, Okan NA, Bales E et al (2002) Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 62:6231–6239

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported by National Science Foundation of China NSDC No. 30770849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Jiang, H., Xu, L. et al. Dysregulation of CREB binding protein triggers thrombin-induced proliferation of vascular smooth muscle cells. Mol Cell Biochem 315, 123–130 (2008). https://doi.org/10.1007/s11010-008-9795-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9795-4

Keywords

Navigation