Skip to main content
Log in

Phosphoenolpyruvate-dependent inhibition of collagen biosynthesis, α2β1 integrin and IGF-I receptor signaling in cultured fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The mechanism of collagen biosynthesis regulation is not fully understood. The finding that prolidase plays an important role in collagen biosynthesis and phosphoenolpyruvate inhibits prolidase activity “in vitro” led to evaluate its effect on collagen biosynthesis in cultured human skin fibroblasts. Confluent fibroblasts were treated with millimolar concentrations (1–4 mM) of phosphoenolpyruvate monopotassium salt (PEP) for 24 h. It was found that PEP-dependent decrease in prolidase activity and expression was accompanied by parallel decrease in collagen biosynthesis. However, the experiments with inhibitor of PEP production, 3-mercaptopicolinate revealed no direct correlation between collagen biosynthesis and prolidase activity and expression. Since insulin-like growth factor (IGF-I) is the most potent stimulator of both collagen biosynthesis and prolidase activity, and prolidase is regulated by β1 integrin signaling, the effect of PEP on IGF-I receptor (IGF-IR) and β1 integrin receptor expressions were evaluated. It was found that the exposure of the cells to 4 mM PEP contributed to a decrease in IGF-IR and β1 integrin receptor expressions. The data suggest that PEP-dependent decrease of collagen biosynthesis in cultured human skin fibroblasts may undergo through depression of α2β1 integrin and IGF-IR signaling. The hypothetical mechanism of the role of prolidase in IGF-IR, β1 integrin receptor expressions, and clinical significance of the process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Myara I, Charpentier C, Lemonnier A (1984) Prolidase and prolidase deficiency. Life Sci 34:1985–1998. doi:10.1016/0024-3205(84)90363-1

    Article  PubMed  CAS  Google Scholar 

  2. Chamson A, Voigtlander V, Myara I, Frey J (1989) Collagen biosynthetic anomalies in prolidase deficiency: effect of glycyl-l-proline on the degradation of newly synthesized collagen. Clin Physiol Biochem 7:128–136

    PubMed  CAS  Google Scholar 

  3. Mock WL, Green PC, Boyer KD (1990) Specificity and pH dependence for acylproline cleavage by prolidase. J Biol Chem 265:19600–19605

    PubMed  CAS  Google Scholar 

  4. Yaron A, Naider F (1993) Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 28:31–81. doi:10.3109/10409239309082572

    Article  PubMed  CAS  Google Scholar 

  5. Emmerson KS, Phang JM (1993) Hydrolysis of proline dipeptides completely fulfills the proline requirement in a proline––auxotropic Chinese Hamster Ovary cell line. J Nutr 123:909–914

    PubMed  CAS  Google Scholar 

  6. Jackson SH, Dennis AW, Greenberg M (1975) Iminopeptiduria: a genetic defect in recycling of collagen; a method for determining prolidase in erythrocytes. CMAJ 113:759–763

    CAS  Google Scholar 

  7. Goodman SI, Solomons CC, Muschenheim F, Macintyre CA, Miles B, O’Brien D (1968) A syndrome resembling lathyrism associated with iminodipeptiduria. Am J Med 45:152–159. doi:10.1016/0002-9343(68)90016-8

    Article  PubMed  CAS  Google Scholar 

  8. Myara I, Miech G, Fabre M, Mangeot M, Lemonnier A (1987) Changes in prolinase and prolidase activity during CCl4 administration inducing liver cytolysis and fibrosis in rat. Br J Exp Pathol 68:7–13

    PubMed  CAS  Google Scholar 

  9. Miltyk W, Karna E, Palka J (1996) Inhibition of prolidase activity by non-steroid antiinflammatory drugs in cultured human skin fibroblasts. Pol J Pharmacol 48:609–613

    PubMed  CAS  Google Scholar 

  10. Palka J, Miltyk W, Karna E, Wołczyński S (1996) Modulation of prolidase activity during in vitro aging of human skin fibroblasts the role of extracellular matrix collagen. Tokai J Exp Clin Med 21:207–213

    PubMed  CAS  Google Scholar 

  11. Muszynska A, Palka J, Gorodkiewicz E (2000) The mechanism of daunorubicin-induced inhibition of prolidase activity in human skin fibroblasts and its implication to impaired collagen biosynthesis. Exp Toxicol Pathol 52:149–155

    PubMed  CAS  Google Scholar 

  12. Miltyk W, Palka JA (2000) Potential role of pyrroline 5-carboxylate in regulation of collagen biosynthesis in cultured human skin fibroblasts. Comp Biochem Physiol A 125:265–271

    CAS  Google Scholar 

  13. Palka JA, Phang JM (1997) Prolidase activity in fibroblasts is regulated by interaction of extracellular matrix with cell surface integrin receptors. J Cell Biochem 67:166–175. doi:10.1002/(SICI)1097-4644(19971101)67:2<166::AID-JCB2>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  14. Palka JA, Phang JM (1998) Prolidase in human breast cancer MCF-7 cells. Cancer Lett 127:63–70. doi:10.1016/S0304-3835(98)00011-1

    Article  PubMed  CAS  Google Scholar 

  15. Surażyński A, Palka J, Wolczynski S (2001) Phosphorylation of prolidase increases the enzyme activity. Mol Cell Biochem 220:95–101. doi:10.1023/A:1010849100540

    Article  PubMed  Google Scholar 

  16. Radzicka A, Wolfenden R (1991) Analogues of intermediates in the action of pig kidney prolidase. Biochemistry 30:4160–4164. doi:10.1021/bi00231a008

    Article  PubMed  CAS  Google Scholar 

  17. Cechowska-Pasko M, Palka J, Bańkowski E (2004) Fasting-induced inhibition of collagen biosynthesis in rat skin. A possible role for phosphoenolpyruvate in this process. Mol Cell Biochem 265:203–208. doi:10.1023/B:MCBI.0000044397.32748.23

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Taub M (1991) Insulin and other regulatory factors modulate the growth and the phosphoenolpyruvate carboxykinase (PEPCK) activity of primary rabbit kidney proximal tubule cells in serum free medium. J Cell Physiol 147:374–382. doi:10.1002/jcp.1041470224

    Article  PubMed  CAS  Google Scholar 

  19. Myara I, Charpentier C, Lemonnier A (1982) Optimal conditions for prolidase assay by proline colorimetric determination: application to imidopeptiduria. Clin Chim Acta 125:193–205. doi:10.1016/0009-8981(82)90196-6

    Article  PubMed  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NI, Farr AL, Randall IR (1951) Protein measurement with the Folin reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  21. Oyamada I, Palka J, Schalk EM, Takeda K, Peterkofsky B (1990) Scorbutic and fasted guinea pig sera contain an insulin-like growth factor I reversible inhibitor of proteoglycan and collagen synthesis in chick embryo chondrocytes and adult human skin fibroblasts. Arch Biochem Biophys 276:85–93. doi:10.1016/0003-9861(90)90013-O

    Article  PubMed  CAS  Google Scholar 

  22. Peterkofsky B, Chojkier M, Bateman J (1982) Determination of collagen synthesis in tissue and cell culture system. In: Fufthmar M (ed) Immunochemistry of the extracellular matrix. CRC Press, Boca Raton, FL, pp 19–47

    Google Scholar 

  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  24. Palka JA, Karna E, Miltyk W (1997) Fibroblast chemotaxis and prolidase activity modulation by insulin-like growth factor II and mannose 6-phosphate. Mol Cell Biochem 168:177–183. doi:10.1023/A:1006842315499

    Article  PubMed  CAS  Google Scholar 

  25. Ivaska J, Reunanen H, Westermarck J, Koivisto L, Kahari VM, Heino J (1999) Integrin alpha2beta1 mediates isoform––specific activation of p38 and up-regulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 147:401–416. doi:10.1083/jcb.147.2.401

    Article  PubMed  CAS  Google Scholar 

  26. Goldstein RH, Poliks CF, Pilch PF, Smith BD, Fine A (1989) Stimulation of collagen formation by insulin and insulin-like growth factor-I in cultures of human lung fibroblasts. Endocrinology 124:964–970

    Article  PubMed  CAS  Google Scholar 

  27. Makela JK, Vuorio T, Vuorio E (1990) Growth-dependent modulation of type I collagen production and mRNA levels in cultured human skin fibroblasts. Biochim Biophys Acta 1049:171–176

    PubMed  CAS  Google Scholar 

  28. Muszyńska A, Palka J, Wołczyński S (1998) Doxorubicin-induced inhibition of prolidase activity in human skin fibroblasts and its implication to impaired collagen biosynthesis. Pol J Pharmacol 50:151–157

    PubMed  Google Scholar 

  29. Karna E, Surażynski A, Palka J (2000) Collagen metabolism disturbances are accompanied by an increase in prolidase activity in lung carcinoma planoepitheliale. Int J Pathol 81:341–347. doi:10.1111/j.1365-2613.2000.00168.x

    Article  CAS  Google Scholar 

  30. Galicka A, Wołczyński S, Anchim T, Surazynski A, Lesniewicz R, Palka J (2001) Defects of type I procollagen metabolism correlated with decrease of prolidase activity in a case of lethal osteogenesis imperfecta. Eur J Biochem 268:2172–2178. doi:10.1046/j.1432-1327.2001.02099.x

    Article  PubMed  CAS  Google Scholar 

  31. Karna E, Miltyk W, Wołczyński S, Palka J (2001) The potential mechanism for glutamine-induced collagen biosynthesis in cultured human skin fibroblasts. Comp Biochem Physiol B 130:23–32. doi:10.1016/S1096-4959(01)00400-6

    Article  PubMed  CAS  Google Scholar 

  32. Manes NP, El-Maghrabi MR (2005) The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 438:125–136. doi:10.1016/j.abb.2005.04.011

    Article  PubMed  CAS  Google Scholar 

  33. Saiki S, Yamaguchi K, Chijiiwa K, Shimizu S, Hamasaki N, Tanaka MP (1997) Phosphoenolpyruvate prevents the decline in hepatic ATP and energy charge after ischemia and reperfusion injury in rats. J Surg Res 73:59–65. doi:10.1006/jsre.1997.5177

    Article  PubMed  CAS  Google Scholar 

  34. Collins LB, Thomas TD (1974) Pyruvate kinase of Streptococcus lactis. J Bacteriol 120:52–58

    PubMed  CAS  Google Scholar 

  35. Palka JA, Phang JM (1994) Prolidase (PLD) activity in regulated by cell surface-extracellular matrix (ECM) interaction in normal fibroblast and MCF-7 cells. Proc Am Assoc Cancer Res 35:531

    Google Scholar 

  36. Miltyk W, Karna E, Wołczyński S, Pałka J (1998) Insulin-like growth factor I- dependent regulation of prolidase activity in cultured human skin fibroblasts. Mol Cell Biochem 189:177–184. doi:10.1023/A:1006958116586

    Article  PubMed  CAS  Google Scholar 

  37. Surażyński A, Sienkiewicz P, Wołczyński S, Pałka J (2005) Differential effects of echistatin and thrombin on collagen production and prolidase activity in human dermal fibroblasts and their possible implication in β1-integrin-mediated signaling. Pharm Res 51:217–221. doi:10.1016/j.phrs.2004.08.004

    Article  CAS  Google Scholar 

  38. Surazynski A, Donald SP, Cooper SK, Whiteside MA, Salnikow K, Liu Y et al (2008) Extracellular matrix and HIF-1 signaling: the role of prolidase. Int J Cancer 122:1435–1440. doi:10.1002/ijc.23263

    Article  PubMed  CAS  Google Scholar 

  39. Surazynski A, Miltyk W, Palka J, Phang JM (2008) Prolidase-dependent regulation of collagen biosynthesis. Amino Acids. Epub ahead of print

  40. Phang JM, Scriver CR (1989) Disorders of proline and hydroxyproline metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. McGraw Hill, New York, pp 577–597

    Google Scholar 

  41. Fremeau RT, Caron MG, Blakley RD (1992) Molecular cloning and expression of a high affinity l-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8:915–926. doi:10.1016/0896-6273(92)90206-S

    Article  PubMed  CAS  Google Scholar 

  42. King GF, Kuchel PW (1984) A proton n.m.r. study of iminodipeptide transport and hydrolysis in the human erythrocyte. Possible physiological roles for the coupled system. Biochem J 220:553–560

    PubMed  CAS  Google Scholar 

  43. Feksa LR, Cornelio AR, Dutra-Filho CS, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Res 968:199–205. doi:10.1016/S0006-8993(03)02239-X

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy A. Palka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karna, E., Palka, J.A. Phosphoenolpyruvate-dependent inhibition of collagen biosynthesis, α2β1 integrin and IGF-I receptor signaling in cultured fibroblasts. Mol Cell Biochem 315, 61–67 (2008). https://doi.org/10.1007/s11010-008-9789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9789-2

Keywords

Navigation