Regulatory role of cytochrome P450scc and pregnenolone in myelination by rat Schwann cells

Abstract

To investigate the production of steroid hormones by Schwann cells and to examine the regulation of steroid hormone production during myelination, cultures of rat Schwann cells were differentiated into their myelinating phenotype in the absence of neurons with dibutyryl cAMP (db-cAMP). During this process, the expression of P450scc (involved in steroid biosynthesis) was elevated at both the mRNA and protein levels as evident in RT-PCR, Western blots, and immunostaining. Labeling of the cells with [14C] acetate revealed enhanced production of pregnenolone during differentiation into the myelinating phenotype. Disruption of P450scc’s activity with an inhibitor diminished the extent of differentiation into the myelinating phenotype as levels of mRNA and protein expression of myelin protein zero (P0) declined. However, the effect was reversed with the addition of pregnenolone. Furthermore, when the differentiating cultures were treated with pregnenolone, mRNA expression of P0 was upregulated, suggesting the stimulation of the differentiation process. Together, these results provide evidence for Schwann cells as a major producer of steroid hormones and pregnenolone production by P450scc as an important regulatory step during myelination.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

3β-HSD:

3β-Hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase

AMG:

Aminoglutethimide

cAMP:

Cyclic adenosine monophosphate

db-cAMP:

Dibutyryl cAMP

DHP:

5α-Dihydroprogesterone

DMEM:

Dulbecco’s Modified Eagle Medium

DMS:

Defined medium for Schwann cells

GABA:

Gamma-aminobutyric acid

L19:

Ribosomal protein L19

MAG:

Myelin associated glycoprotein

MBP:

Myelin basic protein

P0:

Myelin protein zero

P450scc:

P450 side-chain cleavage

PMP-22:

Peripheral myelin protein-22

Preg:

Pregnenolone

RT-PCR:

Reverse transcription-polymerase chain reaction

THP:

5α,3α-Tetrahydroprogesterone

References

  1. 1.

    Bunge MB, Williams AK, Wood PM (1982) Neuron-Schwann cell interaction in basal lamina formation. Dev Biol 92:449–460

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Gupta SK, Pringle J, Poduslo JF et al (1993) Induction of myelin genes during peripheral nerve remyelination requires a continuous signal from the ingrowing axon. J Neurosci Res 34:14–23

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Windebank AJ, Wood P, Bunge RP et al (1985) Myelination determines the caliber of dorsal root ganglion neurons in culture. J Neurosci 5:1563–1569

    PubMed  CAS  Google Scholar 

  4. 4.

    Takeda Y, Murakami Y, Asou H et al (2001) The roles of cell adhesion molecules on the formation of peripheral myelin. Keio J Med 50:240–248

    PubMed  CAS  Google Scholar 

  5. 5.

    Garratt AN, Britsch S, Birchmeier C (2000) Neuregulin, a factor with many functions in the life of a Schwann cell. Bioessays 22:987–996

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Sobue G, Pleasure D (1984) Schwann cell galactocerebroside induced by derivatives of adenosine 3′,5′-monophosphate. Science 224:72–74

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: Beginning of the story. Int Rev Neurobiol 46:1–32

    PubMed  CAS  Article  Google Scholar 

  8. 8.

    De Nicola AF, Gonzalez SL, Labombarda F et al (2006) Progesterone treatment of spinal cord injury: effects on receptors, neurotrophins, and myelination. J Mol Neurosci 28:3–15

    PubMed  Article  Google Scholar 

  9. 9.

    Dubrovsky BO (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29:169–192

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Leonelli E, Ballabio M, Consoli A et al (2006) Neuroactive steroids: A therapeutic approach to maintain peripheral nerve integrity during neurodegenerative events. J Mol Neurosci 28:65–76

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG (2008) Neuroactive steroids: State of the art and new perspectives. Cell Mol Life Sci 65:777−797

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Mellon SH (2007) Neurosteroid regulation of central nervous system development. Pharmacol Ther 116:107–124

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Patte-Mensah C, Mensah-Nyagan AG (2008) Peripheral neuropathy and neurosteroid formation in the central nervous system. Brain Res Rev 57:454−459

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Roglio I, Giatti S, Pesaresi M et al (2008) Neuroactive steroids and peripheral neuropathy. Brain Res Rev 57:460−469

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Schumacher M, Guennoun R, Stein DG et al (2007) Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 116:77–106

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Schumacher M, Guennoun R, Robert F et al (2004) Local synthesis and dual actions of progesterone in the nervous system: Neuroprotection and myelination. Growth Horm IGF Res 14(Suppl A):S18–33

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ghayee HK, Auchus RJ (2007) Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 8:289–300

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25:947–970

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Pikuleva IA (2006) Cholesterol-metabolizing cytochromes P450. Drug Metab Dispos 34:513–520

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Simard J, Ricketts ML, Gingras S et al (2005) Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. Endocr Rev 26:525–582

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Morfin R, Young J, Corpechot C et al (1992) Neurosteroids: Pregnenolone in human sciatic nerves. Proc Natl Acad Sci USA 89:6790–6793

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Akwa Y, Schumacher M, Jung-Testas I et al (1993) Neurosteroids in rat sciatic nerves and Schwann cells. CR Acad Sci III 316:410–414

    CAS  Google Scholar 

  23. 23.

    Coirini H, Gouezou M, Delespierre B et al (2003) Characterization and regulation of the 3beta-hydroxysteroid dehydrogenase isomerase enzyme in the rat sciatic nerve. J Neurochem 84:119–126

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Koenig HL, Schumacher M, Ferzaz B et al (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1503

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Desarnaud F, Do Thi AN, Brown AM et al (1998) Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. J Neurochem 71:1765–1768

    PubMed  CAS  Article  Google Scholar 

  26. 26.

    Magnaghi V, Cavarretta I, Zucchi I et al (1999) Po gene expression is modulated by androgens in the sciatic nerve of adult male rats. Brain Res Mol Brain Res 70:36–44

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Magnaghi V, Ballabio M, Gonzalez LC et al (2004) The synthesis of glycoprotein Po and peripheral myelin protein 22 in sciatic nerve of male rats is modulated by testosterone metabolites. Brain Res Mol Brain Res 126:67–73

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Melcangi RC, Magnaghi V, Cavarretta I et al (1999) Progesterone derivatives are able to influence peripheral myelin protein 22 and P0 gene expression: Possible mechanisms of action. J Neurosci Res 56:349–357

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Melcangi RC, Magnaghi V, Cavarretta I et al (1998) Age-induced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. repair by steroid derivatives. Neuroscience 85:569–578

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Chan JR, Phillips LJ II, Glaser M (1998) Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation. Proc Natl Acad Sci USA 95:10459–10464

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Chan JR, Rodriguez-Waitkus PM, Ng BK et al (2000) Progesterone synthesized by Schwann cells during myelin formation regulates neuronal gene expression. Mol Biol Cell 11:2283–2295

    PubMed  CAS  Google Scholar 

  32. 32.

    Morgan L, Jessen KR, Mirsky R (1994) Negative regulation of the P0 gene in Schwann cells: suppression of P0 mRNA and protein induction in cultured Schwann cells by FGF2 and TGF beta 1, TGF beta 2 and TGF beta 3. Development 120:1399–1409

    PubMed  CAS  Google Scholar 

  33. 33.

    Hager G, Eckert E, Schwaiger FW (1999) Semiquantitative analysis of low levels of mRNA expression from small amounts of brain tissue by nonradioactive reverse transcriptase-polymerase chain reaction. J Neurosci Methods 89:141–149

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Horikoshi T, Sakakibara M (2000) Quantification of relative mRNA expression in the rat brain using simple RT-PCR and ethidium bromide staining. J Neurosci Methods 99:45–51

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Akwa Y, Sananes N, Gouezou M et al (1993) Astrocytes and neurosteroids: Metabolism of pregnenolone and dehydroepiandrosterone. regulation by cell density. J Cell Biol 121:135–143

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Sobue G, Shuman S, Pleasure D (1986) Schwann cell responses to cyclic AMP: Proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res 362:23–32

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Morgan L, Jessen KR, Mirsky R (1991) The effects of cAMP on differentiation of cultured Schwann cells: Progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP, NCAM, NGF-receptor) depends on growth inhibition. J Cell Biol 112:457–467

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Benmessahel Y, Troadec JD, Cadepond F et al (2004) Downregulation of steroidogenic acute regulatory protein (StAR) gene expression by cyclic AMP in cultured Schwann cells. Glia 45:213–228

    PubMed  Article  Google Scholar 

  39. 39.

    Yamada H, Komiyama A, Suzuki K (1995) Schwann cell responses to forskolin and cyclic AMP analogues: Comparative study of mouse and rat Schwann cells. Brain Res 681:97–104

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Stocco DM (2000) Intramitochondrial cholesterol transfer. Biochim Biophys Acta 1486:184–197

    PubMed  CAS  Google Scholar 

  41. 41.

    Stocco DM (2001) StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 63:193–213

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Fontaine-Lenoir V, Chambraud B, Fellous A et al (2006) Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci USA 103:4711–4716

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Murakami K, Fellous A, Baulieu EE et al (2000) Pregnenolone binds to microtubule-associated protein 2 and stimulates microtubule assembly. Proc Natl Acad Sci USA 97:3579–3584

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Kidd GJ, Andrews SB, Trapp BD (1994) Organization of microtubules in myelinating Schwann cells. J Neurocytol 23:801–810

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Gould RM, Sinatra RS (1981) Internodal distribution of phosphatidylcholine biosynthetic activity in teased peripheral nerve fibres: An autoradiographic study. J Neurocytol 10:161–167

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Thyberg J, Moskalewski S (1985) Microtubules and the organization of the golgi complex. Exp Cell Res 159:1–16

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Trapp BD, Kidd GJ, Hauer P et al (1995) Polarization of myelinating Schwann cell surface membranes: role of microtubules and the trans-golgi network. J Neurosci 15:1797–1807

    PubMed  CAS  Google Scholar 

  48. 48.

    Trapp BD, Pfeiffer SE, Anitei M et al (2004) Cell biology of myelin assembly. In: Lazzarini RA (ed) Myelin biology and disorders. Elsevier Academic Press, New York

    Google Scholar 

  49. 49.

    Jung-Testas I, Do Thi A, Koenig H et al (1999) Progesterone as a neurosteroid: Synthesis and actions in rat glial cells. J Steroid Biochem Mol Biol 69:97–107

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Robert F, Guennoun R, Desarnaud F et al (2001) Synthesis of progesterone in Schwann cells: Regulation by sensory neurons. Eur J Neurosci 13:916–924

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Azcoitia I, Leonelli E, Magnaghi V et al (2003) Progesterone and its derivatives dihydroprogesterone and tetrahydroprogesterone reduce myelin fiber morphological abnormalities and myelin fiber loss in the sciatic nerve of aged rats. Neurobiol Aging 24:853–860

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Martini L, Magnaghi V, Melcangi RC (2003) Actions of progesterone and its 5alpha-reduced metabolites on the major proteins of the myelin of the peripheral nervous system. Steroids 68:825–829

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Desarnaud F, Bidichandani S, Patel PI et al (2000) Glucocorticosteroids stimulate the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. Brain Res 865:12–16

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Rodriguez-Waitkus PM (2004) Biosynthesis and signaling of glucocorticoids and progestins and their effects on myelin synthesis in Schwann cell/neuronal co-cultures. Dissertation, University of Illinois at Urbana-Champaign

  55. 55.

    Groyer G, Eychenne B, Girard C et al (2006) Expression and functional state of the corticosteroid receptors and 11 beta-hydroxysteroid dehydrogenase type 2 in Schwann cells. Endocrinology 147:4339–4350

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Jung-Testas I, Schumacher M, Robel P et al (1996) Demonstration of progesterone receptors in rat Schwann cells. J Steroid Biochem Mol Biol 58:77–82

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Magnaghi V, Ballabio M, Cavarretta IT et al (2004) GABAB receptors in Schwann cells influence proliferation and myelin protein expression. Eur J Neurosci 19:2641–2649

    PubMed  Article  Google Scholar 

  58. 58.

    Melcangi RC, Cavarretta IT, Ballabio M et al (2005) Peripheral nerves: A target for the action of neuroactive steroids. Brain Res Brain Res Rev 48:328–338

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Neuberger TJ, Kalimi O, Regelson W et al (1994) Glucocorticoids enhance the potency of Schwann cell mitogens. J Neurosci Res 38:300–313

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Keeney DS, Mason JI (1992) Expression of testicular 3 beta-hydroxysteroid dehydrogenase/Δ5→4-isomerase: regulation by luteinizing hormone and forskolin in leydig cells of adult rats. Endocrinology 130:2007–2015

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Jessen KR, Mirsky R, Morgan L (1991) Role of cyclic AMP and proliferation controls in Schwann cell differentiation. Ann NY Acad Sci 633:78–89

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. H. Edward Conrad for helpful advice and suggestions. This work was funded in part by grants from the Multiple Sclerosis Society and the American Heart Association (Midwest Affiliate).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Glaser.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, T.S., Glaser, M. Regulatory role of cytochrome P450scc and pregnenolone in myelination by rat Schwann cells. Mol Cell Biochem 313, 79–89 (2008). https://doi.org/10.1007/s11010-008-9745-1

Download citation

Keywords

  • Myelination
  • P450scc
  • Pregnenolone
  • Schwann cell
  • cAMP
  • Steroid