Skip to main content
Log in

Evidence of complete cellular repair of 1,N6-ethenoadenine, a mutagenic and potential damage for human cancer, revealed by a novel method

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

1,N6-Ethenoadenine (εA) is generated endogenously by lipid peroxidation and exogenously by tumorigenic industrial agents, vinyl chloride, and vinyl carbamate. εA detected in human tissues causes mutation and is implicated in liver, colon and lung cancers. N-methyl purine DNA-glycosylase (MPG) is the only enzyme known so far to repair εA. However, the mechanism of in vivo repair of εA and the role of MPG remain enigmatic. Moreover, previous in vivo repair studies for DNA lesions, including εA, focused only on the step of the removal of the base lesion without further insight into the completion of the repair process. This may be in part due to the unavailability of an appropriate in vivo quantitative method to evaluate complete BER process at the basal level. Our newly developed in vivo method is highly sensitive and involves phagemid M13mp18, containing εA at a defined position. The complete repair events have been estimated by plaque assay in E. coli with the phagemids recovered from the human cells after cellular processing. We found that the detectable complete (removal and replacement of εA with adenine) repair was observed only 18% in 16 h, but with the repair nearing completion within 24 h in colon cancer, HCT-116, cells. Moreover, MPG is the predominant enzyme for the BER process to remove εA in mammalian cells. Although, the εA is fairly a bulky adduct compared to other small BER substrate lesions, NER pathway is not involved in repair of this adduct. Furthermore, the εA repair in vivo and in vitro is predominant in the G0/G1 phase of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BER:

Base excision repair

MPG:

N-Methylpurine DNA glycosylase

Hx:

Hypoxanthine

εA:

1,N6-Ethenoadenine

m3A:

3-Methyl adenine

m7G:

7-Methyl guanine

CCC:

Covalently closed circular

Reference

  1. Bartsch H (1999) Keynote address: exocyclic adducts as new risk markers for DNA damage in man. IARC Sci Publ 150:1–16

    PubMed  CAS  Google Scholar 

  2. Bartsch H, Nair J (2004) Oxidative stress and lipid peroxidation-derived DNA-lesions in inflammation driven carcinogenesis. Cancer Detect Prev 28:385–391

    Article  PubMed  CAS  Google Scholar 

  3. Chung FL, Chen HJC, Nath RG (1996) Lipid peroxidation as a potential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis 17:2105–2111

    Article  PubMed  CAS  Google Scholar 

  4. Leithauser JVLT, Liem A, Steward BC, Miller M, Miller JA (1990) 1,N6-ethenoadenosine formation, mutagenicity and murine tumor induction as indicators of the generation of an electrophilic epoxide metabolite of the closely related carcinogens ethyl carbamate (urethane) and vinyl carbamate. Carcinogenesis 11:463–473

    Article  PubMed  CAS  Google Scholar 

  5. Guengerich FP, Kim DH (1991) Enzymatic oxidation of ethyl carbamate to vinyl carbamate and its role as an intermediate in the formation of 1,N6-ethenoadenosine. Chem Res Toxicol 4:413–421

    Article  PubMed  CAS  Google Scholar 

  6. Nair J, Barbin A, Guichard Y, Bartsch H (1995) 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytine in liver DNA from humans and untreated rodents detected by immunoaffinity 32P-postlabeling. Carcinogenesis 16:613–617

    Article  PubMed  CAS  Google Scholar 

  7. Kielhorn J, Melber C, Wahnschaffe U, Aitio A, Mangelsdorf I (2000) Vinyl chloride: still a cause for concern. Environ Health Perspect 108:579–588

    Article  PubMed  CAS  Google Scholar 

  8. Godschalk R, Nair J, van Schooten FJ, Risch A, Drings P, Kayser K, Dienemann H, Bartsch H (2002) Comparison of multiple DNA adducts types in tumor adjacent human lung tissue: effect of cigarette smoking. Carcinogenesis 23:2081–2086

    Article  PubMed  CAS  Google Scholar 

  9. Levine RL, Yang IY, Hossain M, Pandya GA, Grollman AP, Moriya M (2000) Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Cancer Res 60:4098–4104

    PubMed  CAS  Google Scholar 

  10. Levine RL, Miller H, Grollman A, Ohashi E, Ohmori H, Masutani C, Hanaoka F, Moriya M (2001) Translesion DNA synthesis catalyzed by human pol eta and pol kappa across 1,N6-ethenodeoxyadenosine. J Biol Chem 276:18717–18721

    Article  PubMed  CAS  Google Scholar 

  11. Speina E, Zielińska M, Barbin A (2003) Decreased Repair Activities of 1,N6-Ethenoadenine and 3,N4-Ethenocytosine in Lung Adenocarcinoma Patients. Cancer Res 63:4351–4357

    PubMed  CAS  Google Scholar 

  12. Barbin A (2000) Etheno-adduct-forming chemicals: from mutagenicity testing to tumor mutation spectra. Mutat Res 462:55–69

    Article  PubMed  CAS  Google Scholar 

  13. Dosanjh MK, Roy R, Mitra S, Singer B (1994) 1,N6-ethenoadenine is preferred over 3-methyladenine as substrate by a cloned human N-methylpurine-DNA glycosylase (3-methyladenine-DNA glycosylase). Biochemistry 33:1624–1628

    Article  PubMed  CAS  Google Scholar 

  14. Gros L, Ishchenko AA, Saparbaev M (2003) Enzymology of repair of etheno-adducts. Mutat Res 531:219–229

    PubMed  CAS  Google Scholar 

  15. Roy R, Biswas T, Hazra TK, Roy G, Grabowski DT, Izumi T, Srinivasan G, Mitra S (1998) Specific interaction of wild-type and truncated mouse N-methylpurine-DNA glycosylase with ethenoadenine-containing DNA. Biochemistry 37:580–589

    Article  PubMed  CAS  Google Scholar 

  16. Roy R, Brooks C, Mitra S (1994) Purification and biochemical characterization of recombinant N-methylpurine-DNA glycosylase of the mouse. Biochemistry 33:15131–15140

    Article  PubMed  CAS  Google Scholar 

  17. Roy R, Kennel SJ, Mitra S (1996) Distinct substrate preference of human and mouse N-methylpurine-DNA glycosylases. Carcinogenesis 17:2177–2182

    Article  PubMed  CAS  Google Scholar 

  18. O’Connor TR (1993) Purification and characterization of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res 21:5561–5569

    Article  PubMed  CAS  Google Scholar 

  19. Saparbaev M, Laval J (1994) Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci USA 91:8873–8877

    Article  Google Scholar 

  20. Adhikari S, Uren A, Roy R (2007) N-terminal extension of N-Methylpurine-DNA glycosylase is required for turnover in hypoxanthine excision reaction. J Biol Chem 282:30078–30084

    Article  PubMed  CAS  Google Scholar 

  21. Jaiswal M, Lipinski LJ, Bohr VA, Mazur SJ (1998) Efficient in vitro repair of 7-hydro-8-oxodeoxyguanosine by human cell extracts: involvement of multiple pathways. Nucleic Acids Res 26:2184–2191

    Article  PubMed  CAS  Google Scholar 

  22. Klungland A, Lindahl T (1997) Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 16:3341–3348

    Article  PubMed  CAS  Google Scholar 

  23. Sandigursky M, Freyer GA, Franklin WA (1998) The post-incision steps of the DNA base excision repair pathway in Escherichia coli: studies with a closed circular DNA substrate containing a single U:G base pair. Nucleic Acids Res 26:1282–1287

    Article  PubMed  CAS  Google Scholar 

  24. Singhal RK, Prasad R, Wilson SH (1995) DNA polymerase beta conducts the gap-filling step in uracil-initiated base excision repair in a bovine testis nuclear extract. J Biol Chem 270:949–957

    Article  PubMed  CAS  Google Scholar 

  25. Dianov GL, Thybo T, Dianova II, Lipinski LJ, Bohr VA (2000) Single nucleotide patch base excision repair is the major pathway for removal of thymine glycol from DNA in human cell extracts. J Biol Chem 275:11809–11813

    Article  PubMed  CAS  Google Scholar 

  26. Fortini P, Parlanti E, Sidorkina OM, Laval J, Dogliotti E (1999) The type of DNA glycosylase determines the base excision repair pathway in mammalian cells. J Biol Chem 274:15230–15236

    Article  PubMed  CAS  Google Scholar 

  27. Engelward BP, Weeda G, Wyatt MD, Broekhof JL, Wit JD, Donker I, Allan JM, Gold B, Hoeijmakers JH, Samson LD (1997) Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci USA 94:13087–13092

    Article  PubMed  CAS  Google Scholar 

  28. Maksimenko A, Ishchenko AA, Sanz G, Laval J, Elder R, Saparbaev MK (2004) A molecular beacon assay for measuring base excision repair activities. Biochem Biophys Res Commun 18:240–246

    Article  Google Scholar 

  29. Smith SA, Engelward BP (2000) In vivo repair of methylation damage in Aag 3-methyladenine DNA glycosylase null mouse cells. Nucleic Acids Res 17:13294–13300

    Google Scholar 

  30. Ham AJ, Engelward BP, Koc H, Sangaiah R, Meira LB, Samson LD, Swenberg JA (2004) New immunoaffinity-LC-MS/MS methodology reveals that Aag null mice are deficient in their ability to clear 1, N6-etheno-deoxyadenosine DNA lesions from lung and liver in vivo. DNA Repair (Amst) 3:257–265

    Article  CAS  Google Scholar 

  31. Vindeløv LL, Christensen IJ, Nissen NI (1998) A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3:323–327

    Article  Google Scholar 

  32. Adhikari S, Kennel SJ, Roy G, Mitra PS, Mitra S, Roy R (2007) Discrimination of substrate recognition of N-Methylpurine-DNA glycosylase revealed by a potent neutralizing monoclonal antibody. DNA Repair 7:31–39

    Article  PubMed  Google Scholar 

  33. Adhikari S, Toretsky JA, Yuan L, Roy R (2006) Magnesium, essential for base excision repair enzymes, inhibits substrate binding of N-methylpurine-DNA glycosylase. J Biol Chem 281:29525–29532

    Article  PubMed  CAS  Google Scholar 

  34. Choudhury S, Pan J, Amin S, Chung FL, Roy R (2004) Repair kinetics of trans-4-hydroxynonenal-induced cyclic 1,N2-propanodeoxyguanine DNA adducts by human cell nuclear extracts. Biochemistry 43:7514–7521

    Article  PubMed  CAS  Google Scholar 

  35. Sambrook J, Fritsch EF, Maniatis T (1998) In molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  36. Nair J, Gansauge F, Beger H, Dolara P, Winde G, Bartsch H (2006) Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn’s disease, ulcerative colitis, and chronic pancreatitis. Antioxid Redox Signal 8:1003–1010

    Article  PubMed  CAS  Google Scholar 

  37. Chakravarti D, Ibeanu GC, Tano K, Mitra S (1991) Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J Biol Chem 24:15710–15715

    Google Scholar 

  38. Sattler U, Frit P, Salles B, Calsou P (2003) Long-patch DNA repair synthesis during base excision repair in mammalian cells. EMBO Rep 4:363–367

    Article  PubMed  CAS  Google Scholar 

  39. Mitra S, Hazra TK, Roy R, Ikeda S, Biswas T, Lock J, Boldogh I, Izumi T (1997) Complexities of DNA base excision repair in mammalian cells. Mol Cells 7:305–312

    PubMed  CAS  Google Scholar 

  40. Reardon JT, Bessho T, Kung HC, Bolton PH, Sancar A (1997) In vitro repair of oxidative DNA damage by human nucleotide excision repair system: possible explanation for neurodegeneration in xeroderma pigmentosum patients. Proc Natl Acad Sci USA 17:9463–9468

    Article  Google Scholar 

  41. Lindahl T, Sedgwick B, Sekiguchi M, Nakabeppu Y (1988) Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem 57:133–157

    Article  PubMed  CAS  Google Scholar 

  42. Sobol RW, Kartalou M, Almeida KH, Joyce DF, Engelward BP, Horton JK, Prasad R, Samson LD, Wilson SH (2003) Base excision Repair intermediates induce p53-independent cytotoxic and genotoxic responses. J Biol Chem 278:39951–39959

    Article  PubMed  CAS  Google Scholar 

  43. Posnick LM, Samson LD (1999) Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol 181:6763–6771

    PubMed  CAS  Google Scholar 

  44. Rinne ML, He Y, Pachkowski BF, Nakamura J, Kelley MR (2005) N-methylpurine DNA glycosylase overexpression increases alkylation sensitivity by rapidly removing non-toxic 7-methylguanine adducts. Nucleic Acids Res 33:2859–2867

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Leona Samson (MIT) for providing the MPG−/− and +/+ MEFs. We thank Ms. Karen Howenstein for expert editorial and administrative help. The work was supported by NIH grant RO1 CA 92306 (RR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, S., Adhikari, S., Cheema, A. et al. Evidence of complete cellular repair of 1,N6-ethenoadenine, a mutagenic and potential damage for human cancer, revealed by a novel method. Mol Cell Biochem 313, 19–28 (2008). https://doi.org/10.1007/s11010-008-9737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9737-1

Keywords

Navigation