Skip to main content
Log in

Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Entry of vitamin C or ascorbate into most tissues requires its movement across the endothelial cell barrier of vessels. If trans-cellular ascorbate movement occurs, then it should be evident as ascorbate efflux from endothelial cells. Cultured EA.926 endothelial cells that had been loaded to about 3.5 mM intracellular ascorbate lost 70–80% of ascorbate to the medium over several hours at 37°C via a non-saturable process that was insensitive to anion transport inhibitors and thiol reagents. Oxidation of this extracellular ascorbate by ascorbate oxidase or ferricyanide enhanced apparent ascorbate efflux, suggesting that efflux of the vitamin was countered in part by its re-uptake on ascorbate transporters. Although basal ascorbate efflux was not calcium-dependent, increased entry of calcium into the cells enhanced ascorbate release. These results support the hypothesis that ascorbate efflux reflects trans-endothelial cell ascorbate movement out of the blood vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DHA:

Dehydroascorbic acid

DIDS:

4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid

EDTA:

Ethylenediamine-tetraacetic acid

GSH:

Reduced glutathione

Hepes:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

KRH:

Krebs-Ringer Hepes

References

  1. Evans RM, Currie L, Campbell A (1982) The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. Br J Nutr 47:473–482. doi:10.1079/BJN19820059

    Article  PubMed  CAS  Google Scholar 

  2. Brubacher D, Moser U, Jordan P (2000) Vitamin C concentrations in plasma as a function of intake: a meta-analysis. Int J Vitam Nutr Res 70:226–237. doi:10.1024/0300-9831.70.5.226

    Article  PubMed  CAS  Google Scholar 

  3. Leibovitz BE, Siegel BV (1980) Aspects of free radical reactions in biological systems: aging. J Gerontol 35:45–56

    PubMed  CAS  Google Scholar 

  4. Sasaki R, Kurokawa T, Tero-Kubota S (1983) Ascorbate radical and ascorbic acid level in human serum and age. J Gerontol 38:26–30

    PubMed  CAS  Google Scholar 

  5. Martin A, Frei B (1997) Both intracellular and extracellular vitamin C inhibit atherogenic modification of LDL by human vascular endothelial cells. Arterioscler Thromb Vasc Biol 17:1583–1590

    PubMed  CAS  Google Scholar 

  6. May JM, Qu ZC (2005) Transport and intracellular accumulation of vitamin C in endothelial cells: relevance to collagen synthesis. Arch Biochem Biophys 434:178–186. doi:10.1016/j.abb.2004.10.023

    Article  PubMed  CAS  Google Scholar 

  7. Tsukaguchi H, Tokui T, Mackenzie B et al (1999) A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 399:70–75. doi:10.1038/19986

    Article  PubMed  CAS  Google Scholar 

  8. Vera JC, Rivas CI, Fischbarg J et al (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79–82. doi:10.1038/364079a0

    Article  PubMed  CAS  Google Scholar 

  9. Christine L, Thomson G, Iggo B et al (1956) The reduction of dehydroascorbic acid by human erythrocytes. Clin Chim Acta 1:557–569. doi:10.1016/0009-8981(56)90043-2

    Article  PubMed  CAS  Google Scholar 

  10. Hughes RE (1964) Reduction of dehydroascorbic acid by animal tissues. Nature 203:1068–1069. doi:10.1038/2031068a0

    Article  PubMed  CAS  Google Scholar 

  11. Mendiratta S, Qu Z-C, May JM (1998) Erythrocyte ascorbate recycling: antioxidant effects in blood. Free Radic Biol Med 24:789–797. doi:10.1016/S0891-5849(97)00351-1

    Article  PubMed  CAS  Google Scholar 

  12. Dhariwal KR, Hartzell WO, Levine M (1991) Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am J Clin Nutr 54:712–716

    PubMed  CAS  Google Scholar 

  13. May JM, Qu ZC, Qiao H et al (2007) Maturational loss of the vitamin C transporter in erythrocytes. Biochem Biophys Res Commun 360:295–298. doi:10.1016/j.bbrc.2007.06.072

    Article  PubMed  CAS  Google Scholar 

  14. Upston JM, Karjalainen A, Bygrave FL et al (1999) Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C. Biochem J 342:49–56. doi:10.1042/0264-6021:3420049

    Article  PubMed  CAS  Google Scholar 

  15. Miele M, Boutelle MG, Fillenz M (1994) The physiologically induced release of ascorbate in rat brain is dependent on impulse traffic, calcium influx and glutamate uptake. Neuroscience 62:87–91. doi:10.1016/0306-4522(94)90316-6

    Article  PubMed  CAS  Google Scholar 

  16. Davis KA, Samson SE, Best K et al (2006) Ca(2+)-mediated ascorbate release from coronary artery endothelial cells. Br J Pharmacol 147:131–139. doi:10.1038/sj.bjp.0706492

    Article  PubMed  CAS  Google Scholar 

  17. May JM, Qu Z-C, Whitesell RR (1995) Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes. Biochemistry 34:12721–12728. doi:10.1021/bi00039a031

    Article  PubMed  CAS  Google Scholar 

  18. Bauer J, Margolis M, Schreiner C et al (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437–449. doi:10.1002/jcp.1041530302

    Article  PubMed  CAS  Google Scholar 

  19. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737. doi:10.1073/pnas.80.12.3734

    Article  PubMed  CAS  Google Scholar 

  20. Pech-Amsellem MA, Myara I, Pico I et al (1996) Oxidative modifications of low-density lipoproteins (LDL) by the human endothelial cell line EA.hy 926. Experientia 52:234–238. doi:10.1007/BF01920713

    Article  PubMed  CAS  Google Scholar 

  21. Jones W, Li X, Perriott LM et al (2002) Uptake, recycling, and antioxidant functions of α-lipoic acid in endothelial cells. Free Radic Biol Med 33:83–93. doi:10.1016/S0891-5849(02)00862-6

    Article  PubMed  CAS  Google Scholar 

  22. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2

    Article  PubMed  CAS  Google Scholar 

  23. May JM, Qu Z-C, Mendiratta S (1998) Protection and recycling of α-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys 349:281–289. doi:10.1006/abbi.1997.0473

    Article  PubMed  CAS  Google Scholar 

  24. Deutsch JC, Santhosh-Kumar CR (1996) Dehydroascorbic acid undergoes hydrolysis on solubilization which can be reversed with mercaptoethanol. J Chromatogr A 724:271–278. doi:10.1016/0021-9673(95)00968-X

    Article  CAS  Google Scholar 

  25. Koshiishi I, Mamura Y, Liu J et al (1998) Degradation of dehydroascorbate to 2,3-diketogulonate in blood circulation. Biochim Biophys Acta 1425:209–214

    PubMed  CAS  Google Scholar 

  26. May JM, Qu Z-C, Li X (2003) Ascorbic acid blunts oxidant stress due to menadione in endothelial cells. Arch Biochem Biophys 411:136–144. doi:10.1016/S0003-9861(02)00715-4

    Article  PubMed  CAS  Google Scholar 

  27. Székely M, Mányai S, Straub FB (1952) Über den Mechanismus der osmotischen Hämolyse. Acta Physiol Acad Sci Hung 3:571–583

    Google Scholar 

  28. Best KA, Holmes ME, Samson SE et al (2005) Ascorbate uptake in pig coronary artery endothelial cells. Mol Cell Biochem 271:43–49. doi:10.1007/s11010-005-3442-0

    Article  PubMed  CAS  Google Scholar 

  29. Hornig D, Weber F, Wiss O (1971) Uptake and release of [I-14C]ascorbic acid and [I-14C]dehydroascorbic acid by erythrocytes of guinea pigs. Clin Chim Acta 31:25–35. doi:10.1016/0009-8981(71)90358-5

    Article  PubMed  CAS  Google Scholar 

  30. Maulen NP, Henriquez EA, Kempe S et al (2003) Upregulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. J Biol Chem 278:9035–9041. doi:10.1074/jbc.M205119200

    Article  PubMed  CAS  Google Scholar 

  31. Agus DB, Gambhir SS, Pardridge WM et al (1997) Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 100:2842–2848. doi:10.1172/JCI119832

    Article  PubMed  CAS  Google Scholar 

  32. Huang J, Agus DB, Winfree CJ et al (2001) Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc Natl Acad Sci USA 98:11720–11724. doi:10.1073/pnas.171325998

    Article  PubMed  CAS  Google Scholar 

  33. García ML, Salazar K, Millán C et al (2005) Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:32–47. doi:10.1002/glia.20133

    Article  Google Scholar 

  34. Qiao H, May JM (2008) Development of ascorbate transport in brain capillary endothelial cells in culture. Brain Res 1208:79–86. doi:10.1016/j.brainres.2008.02.102

    Article  PubMed  CAS  Google Scholar 

  35. Bielski BH, Allen AO, Schwarz HA (1981) Mechanism of disproportionation of ascorbate radicals. J Am Chem Soc 103:3516–3518. doi:10.1021/ja00402a042

    Article  CAS  Google Scholar 

  36. Daskalopoulos R, Korcok J, Tao L et al (2002) Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol. Glia 39:124–132. doi:10.1002/glia.10099

    Article  PubMed  Google Scholar 

  37. Siushansian R, Tao L, Dixon SJ et al (1997) Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. J Neurochem 68:2378–2385

    Article  PubMed  CAS  Google Scholar 

  38. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta Gen Subj 1569:1–9. doi:10.1016/S0304-4165(01)00235-5

    Article  CAS  Google Scholar 

  39. Chatterjee IB, Chatterjee GC, Ghosh NC et al (1960) Biological synthesis of L-ascorbic acid in animal tissues: conversion of L-gulonolactone into L-ascorbic acid. Biochem J 74:193–203

    PubMed  CAS  Google Scholar 

  40. Paolicchi A, Dominici S, Pieri L et al (2002) Glutathione catabolism as a signaling mechanism. Biochem Pharmacol 64:1027–1035. doi:10.1016/S0006-2952(02)01173-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant DK 50435 and by the Vanderbilt Diabetes Research and Training Center (DK 20593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, J.M., Qu, Zc. Ascorbic acid efflux and re-uptake in endothelial cells: maintenance of intracellular ascorbate. Mol Cell Biochem 325, 79–88 (2009). https://doi.org/10.1007/s11010-008-0022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0022-0

Keywords

Navigation