Skip to main content
Log in

Capillary isotachophoresis study of lipoprotein network sensitive to apolipoprotein E phenotype. 1. ApoE distribution between lipoproteins

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sixteen patients differing widely in plasma triglyceride content were divided into three groups by their apolipoprotein E (apoE) phenotype—E33 homozygotes, E23, and E34 heterozygotes. The plasma lipid and apoE distribution between individual lipoproteins was followed by capillary isotachophoresis (CITP) of plasma samples pre-stained with lipid fluorescent probe NBD-C6-ceramide and by fluorescein-labeled apoE, respectively. Among 12 peaks visualized by ceramide staining, an individual peak with very low density lipoproteins (VLDL) was identified. The VLDL cholesterol and apoE content determined by CITP directly in whole plasma were significantly related to their content as determined by conventional analysis with isolated VLDL. The ceramide distribution among lipoprotein pools was insensitive to apoE phenotype (49–53 : 7–11 : 39–43% for HDL, VLDL, and IDL/LDL, respectively) while the preferential binding of apoE to VLDL was observed in E34 patients compared to E33 (62 : 19 : 20 vs. 70 : 9 : 22%). In a study of apoE/F displacement from lipoproteins at plasma titration by apoC-III in vitro, apoE was found to bind more tightly to VLDL from E34 compared to E33 patients as evidenced by both the increased non-displaceable apoE pool, the increased VLDL sorbtion capacity for apoE, and the decreased displacement parameter in a “container” model of lipoprotein binding. Two different types of apoE package in a whole lipoprotein profile were observed. ApoE structure in a particular lipoprotein may underlie the phenotype-sensitive apoE distribution and apoC-III interference in hypertriglyceridemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Austin MA (2000) Triglyceride, small, dense low-density lipoprotein, and the atherogenic lipoprotein phenotype. Curr Atheroscler Rep 2:200–207. doi:10.1007/s11883-000-0021-4

    Article  PubMed  CAS  Google Scholar 

  2. Grundy SM, Mok HY, Zech L et al (1979) Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest 63:1274–1283. doi:10.1172/JCI109422

    Article  PubMed  CAS  Google Scholar 

  3. Dergunov AD (2004) Apolipoprotein E structure and substrate and receptor-binding activities of triglyceride-rich human plasma lipoproteins in normo- and hypertriglyceridemia. Biochemistry (Mosc) 69:720–737. doi:10.1023/B:BIRY.0000040195.34986.93

    Article  CAS  Google Scholar 

  4. Dergunov AD, Novoselov AV, Visvikis S et al (2005) The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype. Biol Chem 386:441–452. doi:10.1515/BC.2005.053

    Article  PubMed  CAS  Google Scholar 

  5. Rensen PCN, van Berkel TJC (1996) Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem 271:14791–14799. doi:10.1074/jbc.271.25.14791

    Article  PubMed  CAS  Google Scholar 

  6. Aalto-Setala K, Weinstock PH, Bisgaier CL et al (1996) Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apoC-III transgenic mice. J Lipid Res 37:1802–1811

    PubMed  CAS  Google Scholar 

  7. Breyer ED, Le N-A, Li X et al (1999) Apolipoprotein C-III displacement of apolipoprotein E from VLDL: effect of particle size. J Lipid Res 40:1875–1882

    PubMed  CAS  Google Scholar 

  8. Chung BH, Dashti N (2000) Lipolytic remnants of human VLDL produced in vitro: effect of HDL levels in the lipolysis mixtures on the apoCs to apoE ratio and metabolic properties of VLDL core remnants. J Lipid Res 41:285–297

    PubMed  CAS  Google Scholar 

  9. Hofman A, Ott A, Breteler MM et al (1997) Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349:151–154. doi:10.1016/S0140-6736(96)09328-2

    Article  PubMed  CAS  Google Scholar 

  10. Barbier A, Clement-Collin V, Dergunov AD et al (2006) The structure of human apolipoprotein E2, E3 and E4 in solution. 1. Tertiary and quaternary structure. Biophys Chem 119:158–169. doi:10.1016/j.bpc.2005.07.010

    Article  PubMed  CAS  Google Scholar 

  11. Dergunov AD, Shuvaev VV, Yanushevskaja EV (1992) Quaternary structure of apolipoprotein E in solution: fluorimetric, chromatographic and immunochemical studies. Biol Chem Hoppe Seyler 373:323–331

    PubMed  CAS  Google Scholar 

  12. Dergunov AD, Vorotnikova YY, Visvikis S et al (2003) Homo- and hetero-complexes of exchangeable apolipoproteins in solution and in lipid-bound form. Spectrochim Acta A Mol Biomol Spectrosc 59:1127–1137. doi:10.1016/S1386-1425(02)00298-6

    Article  PubMed  Google Scholar 

  13. Acharya P, Segall ML, Zaiou M et al (2002) Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochim Biophys Acta 1584:9–19

    PubMed  CAS  Google Scholar 

  14. Morrow JA, Hatters DM, Lu B et al (2002) Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. J Biol Chem 277:50380–50385. doi:10.1074/jbc.M204898200

    Article  PubMed  CAS  Google Scholar 

  15. Clement-Collin V, Barbier A, Dergunov AD et al (2006) The structure of human apolipoprotein E2, E3 and E4 in solution. 2. Multidomain organization correlates with the stability of apoE structure. Biophys Chem 119:170–185. doi:10.1016/j.bpc.2005.07.009

    Article  PubMed  CAS  Google Scholar 

  16. Cohn JS, Tremblay M, Amiot M et al (1996) Plasma concentration of apolipoprotein E in intermediate-sized remnant-like lipoproteins in normolipidemic and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol 16:149–159

    PubMed  CAS  Google Scholar 

  17. Gibson JC, Rubinstein A, Bukberg PR et al (1983) Apolipoprotein E-enriched lipoprotein subclasses in normolipidemic subjects. J Lipid Res 24:886–898

    PubMed  CAS  Google Scholar 

  18. Hannuksela ML, Brousseau ME, Meyn SM et al (2002) In vivo metabolism of apolipoprotein E within the HDL subpopulations LpE, LpE:A-I, LpE:A-II and LpE:A-I:A-II. Atherosclerosis 165:205–220. doi:10.1016/S0021-9150(02)00200-9

    Article  PubMed  CAS  Google Scholar 

  19. Huang Y, von Eckardstein A, Wu S et al (1994) A plasma lipoprotein containing only apolipoprotein E and with γ mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci USA 91:1834–1838. doi:10.1073/pnas.91.5.1834

    Article  PubMed  CAS  Google Scholar 

  20. Krimbou L, Tremblay M, Davignon J et al (1997) Characterization of human plasma apolipoprotein E-containing lipoproteins in the high-density lipoprotein size range: focus on pre-β1-LpE, pre-β2-LpE, and α-LpE. J Lipid Res 38:35–48

    PubMed  CAS  Google Scholar 

  21. Krimbou L, Marcil M, Chiba H et al (2003) Structural and functional properties of human plasma high density-sized lipoprotein containing only apoE particles. J Lipid Res 44:884–892. doi:10.1194/jlr.M200273-JLR200

    Article  PubMed  CAS  Google Scholar 

  22. Bittolo-Bon G, Cazzolato G (1999) Analytical capillary isotachophoresis of total plasma lipoproteins: a new tool to identify atherogenic low density lipoproteins. J Lipid Res 40:170–177

    PubMed  CAS  Google Scholar 

  23. Bottcher A, Schlosser J, Kronenberg F et al (2000) Preparative free-solution isotachophoresis for separation of human plasma lipoproteins: apolipoprotein and lipid composition of HDL subfractions. J Lipid Res 41:905–915

    PubMed  CAS  Google Scholar 

  24. Dergunov AD, Hoy A, Smirnova EA et al (2003) Charge-based heterogeneity of human plasma lipoproteins at hypertriglyceridemia: capillary isotachophoresis study. Int J Biochem Cell Biol 35:530–543. doi:10.1016/S1357-2725(02)00359-X

    Article  PubMed  CAS  Google Scholar 

  25. Schlenck A, Herbeth B, Siest G et al (1999) Characterization and quantification of serum lipoprotein subfractions by capillary isotachophoresis: relationships with lipid, apolipoprotein, and lipoprotein levels. J Lipid Res 40:2125–2133

    PubMed  CAS  Google Scholar 

  26. Zhang B, Miura S, Fan P et al (2005) ApoA-I/phosphatidylcholine discs remodels fast-migrating HDL into slow-migrating HDL as characterized by capillary isotachophoresis. Atherosclerosis 188:95–101. doi:10.1016/j.atherosclerosis.2005.10.032

    Article  PubMed  Google Scholar 

  27. Zorn U, Wolf CF, Wennauer R et al (1999) Separation of lipoproteins by capillary isotachophoresis combined with enzymatic derivatization of cholesterol and triglycerides. Electrophoresis 20:1619–1626 doi:10.1002/(SICI)1522-2683(19990601)20:7<1619::AID-ELPS1619>3.0.CO;2-U

    Article  PubMed  CAS  Google Scholar 

  28. Soderlund S, Soro-Paavonen A, Ehnholm C et al (2005) Hypertriglyceridemia is associated with preβ-HDL levels in subjects with familial low HDL. J Lipid Res 46:1643–1651. doi:10.1194/jlr.M400480-JLR200

    Article  PubMed  Google Scholar 

  29. Kypreos KE, van Dijk KW, Havekes LM et al (2005) Generation of a recombinant apolipoprotein E variant with improved biological functions. Hydrophobic residues (LEU-261, TRP-264, PHE-265, LEU-268, VAL-269) of apoE can account for the apoE-induced hypertriglyceridemia. J Biol Chem 280:6276–6284. doi:10.1074/jbc.M413458200

    Article  PubMed  CAS  Google Scholar 

  30. Tomiyasu K, Walsh BW, Ikewaki K et al (2001) Differential metabolism of human VLDL according to content of apoE and apoC-III. Arterioscler Thromb Vasc Biol 21:1494–1500. doi:10.1161/hq0901.094489

    Article  PubMed  CAS  Google Scholar 

  31. Dallongeville J, Bauge E, Lebel P et al (1997) Fat ingestion is associated with increased levels of apoC-III- and apoE-B-containing lipoprotein particles in humans. Eur J Clin Invest 27:1055–1060. doi:10.1046/j.1365-2362.1997.2350782.x

    Article  PubMed  CAS  Google Scholar 

  32. Fredenrich A, Giroux LM, Tremblay M et al (1997) Plasma lipoprotein distribution of apoC-III in normolipidemic and hypertriglyceridemic subjects: comparison of the apoC-III to apoE ratio in different lipoprotein fractions. J Lipid Res 38:1421–1432

    PubMed  CAS  Google Scholar 

  33. Rubinstein A, Gibson JC, Paterniti JR Jr et al (1985) Effect of heparin-induced lipolysis on the distribution of apolipoprotein E among lipoprotein subclasses. Studies with patients deficient in hepatic triglyceride lipase and lipoprotein lipase. J Clin Invest 75:710–721. doi:10.1172/JCI111751

    Article  PubMed  CAS  Google Scholar 

  34. Tam SP, Dory L, Rubinstein D (1981) Fate of apolipoproteins C–I, C-III, and E during lipolysis of human very low density lipoproteins in vitro. J Lipid Res 22:641–651

    PubMed  CAS  Google Scholar 

  35. Chiba H, Akizawa K, Fujisawa S et al (1992) A rapid and simple quantification of human apolipoprotein E-rich high-density lipoproteins in serum. Biochem Med Metab Biol 47:31–37. doi:10.1016/0885-4505(92)90005-J

    Article  PubMed  CAS  Google Scholar 

  36. Cohn JS, Marcoux C, Davignon J (1999) Detection, quantification, and characterization of potentially atherogenic triglyceride-rich remnant lipoproteins. Arterioscler Thromb Vasc Biol 19:2474–2486

    PubMed  CAS  Google Scholar 

  37. Connelly PW, Maguire GF, Vezina C et al (1994) Kinetics of lipolysis of very low density lipoproteins by lipoprotein lipase. Importance of particle number and noncompetitive inhibition by particles with low triglyceride content. J Biol Chem 269:20554–20560

    PubMed  CAS  Google Scholar 

  38. de Man FHAF, de Beer F, van der Laarse A et al (2000) The hypolipidemic action of bezafibrate therapy in hypertriglyceridemia is mediated by upregulation of lipoprotein lipase: no effects on VLDL substrate affinity to lipolysis or LDL receptor binding. Atherosclerosis 153:363–371. doi:10.1016/S0021-9150(00)00409-3

    Article  PubMed  Google Scholar 

  39. Quinn DM, Shirai K, Jackson RL et al (1982) Lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Inhibition by apolipoprotein C-II. Biochemistry 21:6872–6879. doi:10.1021/bi00269a038

    Article  PubMed  CAS  Google Scholar 

  40. Jonas A (1998) Regulation of lecithin cholesterol acyltransferase activity. Prog Lipid Res 37:209–234. doi:10.1016/S0163-7827(98)00007-1

    Article  PubMed  CAS  Google Scholar 

  41. Havel RJ, Eders HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353. doi:10.1172/JCI103182

    Article  PubMed  CAS  Google Scholar 

  42. Dergunov AD, Aniskovich LP, Shuvaev VV (1990) Affinity chromatography on heparin-sepharose under reducing conditions as a method of selective enrichment with individual isoforms of apolipoprotein E. Bull Exp Biol Med 110:894–898. doi:10.1007/BF00839921

    Article  Google Scholar 

  43. Dergunov AD, Shuvaev VV, Sokol’nikov AA et al (1985) Kinetics of the hydrolysis of triolein by lipoprotein lipase in the presence of apoprotein C-II. Proc Acad Sci USSR 281:39–43

    Google Scholar 

  44. Fontana A, Gross E (1986) Fragmentation of polypeptides by chemical methods. In: Darbre A (ed) Practical protein chemistry: a handbook. Wiley, Chichester, UK, pp 67–120

    Google Scholar 

  45. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  46. Borochov-Neori H, Montal M (1983) Rhodopsin in reconstituted phospholipid vesicles. 1. Structural parameters and light-induced conformational changes detected by resonance energy transfer and fluorescence quenching. Biochemistry 22:197–205. doi:10.1021/bi00270a029

    Article  PubMed  CAS  Google Scholar 

  47. Schmitz G, Mollers C, Richter V (1997) Analytical capillary isotachophoresis of human serum lipoproteins. Electrophoresis 18:1807–1813. doi:10.1002/elps.1150181015

    Article  PubMed  CAS  Google Scholar 

  48. Assmann G, Schriewer H, Schmitz G et al (1983) Quantification of high-density lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2. Clin Chem 29:2026–2030

    PubMed  CAS  Google Scholar 

  49. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  50. Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hha I. J Lipid Res 31:545–548

    PubMed  CAS  Google Scholar 

  51. van den Bergh FA, Tager JM (1976) Localization of neutral glycosphingolipids in human plasma. Biochim Biophys Acta 441:391–402

    PubMed  Google Scholar 

  52. Clarke JT, Stoltz JM (1976) Uptake of radiolabeled galactosyl-(alpha1 goes to 4)-galactosyl-(beta1 goes to 4)-glucosylceramide by human serum lipoproteins in vitro. Biochim Biophys Acta 441:165–169

    PubMed  CAS  Google Scholar 

  53. Holopainen JM, Lemmich J, Richter F et al (2000) Dimyristoylphosphatidylcholine/C16:0-ceramide binary liposomes studied by differential scanning calorimetry and wide- and small-angle x-ray scattering. Biophys J 78:2459–2469

    Article  PubMed  CAS  Google Scholar 

  54. Skipski VP, Barclay M, Barclay RK et al (1967) Lipid composition of human serum lipoproteins. Biochem J 104:340–352

    PubMed  CAS  Google Scholar 

  55. Dong LM, Weisgraber KH (1996) Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 271:19053–19057. doi:10.1074/jbc.271.32.19053

    Article  PubMed  CAS  Google Scholar 

  56. Ibdah JA, Smith C, Lund-Katz S et al (1991) Effects of apolipoprotein structure on the kinetics of apolipoprotein transfer between phospholipid vesicles. Biochim Biophys Acta 1081:220–228

    PubMed  CAS  Google Scholar 

  57. Boyle KE, Phillips MC, Lund-Katz S (1999) Kinetics and mechanism of exchange of apolipoprotein C-III molecules from very low density lipoprotein particles. Biochim Biophys Acta 1430:302–312

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.D.D. thanks the Russian Foundation for Basic Research for financial support, grant 07-04-00377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Dergunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dergunov, A.D., Ponthieux, A., Mel’kin, M.V. et al. Capillary isotachophoresis study of lipoprotein network sensitive to apolipoprotein E phenotype. 1. ApoE distribution between lipoproteins. Mol Cell Biochem 325, 41–51 (2009). https://doi.org/10.1007/s11010-008-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0018-9

Keywords

Navigation