Skip to main content
Log in

Capillary isotachophoresis study of lipoprotein network sensitive to apolipoprotein E phenotype. 2. ApoE and apoC-III relations in triglyceride clearance

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The plasma (P), VLDL (V) triglyceride and apoB (B) clearance rates were measured both as ‘mass’ clearance (k 1) and ‘within the particle’ clearance in three patient groups (E33, E23 and E34 phenotypes) at heparin-induced lipolysis in vivo. The lipid (C)- and apoE (E)-specific lipoprotein profiles both before and after heparin were followed by capillary isotachophoresis. The displacement of apoE by exogenous apoC-III at plasma titration in vitro was measured as well. The phenotype-sensitive lipoprotein networks were constructed based on an established set of metabolic rules. The k 1(V) values did not differ between the three groups, but the lower k 1(P) values showed significant differences. The k 1(P) values for E33 and E23 groups were twofold higher compared to E34. A twofold increase in the rate constant for VLDL triglyceride clearance within the particle in E34 group compared to E23 reflected the inhibition of lipolysis by apoE2. For E33 group, (i) the k 1(V) value was negatively correlated to the size of non-displaceable apoE pool in 2E lipoprotein and to the maximal apoE sorbtion capacity for 2E and 3E lipoproteins; (ii) the k 1(P) value was not associated to the apoE binding parameters; (iii) the k 1(V) value was positively correlated to the 4C level and the magnitude of apoC-III removal from VLDL particle; (iv) the k 1(P) value was positively correlated to the content of apoE, while negatively with apoC-III, in VLDL remnants. For E34 group, the k 1(V) value was positively correlated to 11C and 1–7C pool levels. Lipolysis- and receptor-mediated TG runways seem to be mostly balanced in E33 group, and VLDL TG clearance may be controlled by HDL through apoE dissociation from VLDLs and apolipoprotein accumulation within ‘fast’ HDLs at lipolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rader DJ (2006) Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 116:3090–3100. doi:10.1172/JCI30163

    Article  PubMed  CAS  Google Scholar 

  2. Kuusi T, Ehnholm C, Viikari J et al (1989) Postheparin plasma lipoprotein and hepatic lipase are determinants of hypo- and hyperalphalipoproteinemia. J Lipid Res 30:1117–1126

    PubMed  CAS  Google Scholar 

  3. Austin MA (2000) Triglyceride, small, dense low-density lipoprotein, and the atherogenic lipoprotein phenotype. Curr Atheroscler Rep 2:200–207. doi:10.1007/s11883-000-0021-4

    Article  PubMed  CAS  Google Scholar 

  4. Clark AB, Quarfordt SH (1985) Apolipoprotein effects on the lipolysis of perfused triglyceride by heparin-immobilized milk lipase. J Biol Chem 260:4778–4783

    PubMed  CAS  Google Scholar 

  5. Rensen PCN, van Berkel TJC (1996) Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem 271:14791–14799. doi:10.1074/jbc.271.25.14791

    Article  PubMed  CAS  Google Scholar 

  6. Ehnholm C, Mahley RW, Chappell DA et al (1984) Role of apolipoprotein E in the lipolytic conversion of b-very low density lipoproteins to low density lipoproteins in type III hyperlipoproteinemia. Proc Natl Acad Sci USA 81:5566–5570. doi:10.1073/pnas.81.17.5566

    Article  PubMed  CAS  Google Scholar 

  7. Thuren T, Weisgraber KH, Sisson P et al (1992) Role of apolipoprotein E in hepatic lipase catalyzed hydrolysis of phospholipid in high-density lipoproteins. Biochemistry 31:2332–2338. doi:10.1021/bi00123a018

    Article  PubMed  CAS  Google Scholar 

  8. Dergunov AD, Shuvaev VV, Perova NV (1989) Topo-dynamic characteristics of human plasma VLDL apolipoproteins and efficiency of triacylglycerol hydrolysis by lipoprotein lipase. Biochim Biophys Acta 1005:79–86

    PubMed  CAS  Google Scholar 

  9. Brown WV, Baginsky ML (1972) Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun 46:375–382. doi:10.1016/S0006-291X(72)80115-3

    Article  PubMed  CAS  Google Scholar 

  10. Landis BA, Rotolo FS, Meyers WC et al (1987) Influence of apolipoprotein E on soluble and heparin-immobilized hepatic lipase. Am J Physiol 252:G805–G810

    PubMed  CAS  Google Scholar 

  11. Camacho D, de la Fuente A, Mendes P (2005) The origin of correlations in metabolomics data. Metabolomics 1:53–63. doi:10.1007/s11306-005-1107-3

    Article  CAS  Google Scholar 

  12. Kose F, Weckwerth W, Linke T et al (2001) Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17:1198–1208. doi:10.1093/bioinformatics/17.12.1198

    Article  PubMed  CAS  Google Scholar 

  13. Vance W, Arkin A, Ross J (2002) Determination of causal connectivities of species in reaction networks. Proc Natl Acad Sci USA 99:5816–5821. doi:10.1073/pnas.022049699

    Article  PubMed  CAS  Google Scholar 

  14. Hofmeyr JH, Kacser H, van der Merwe KJ (1986) Metabolic control analysis of moiety-conserved cycles. Eur J Biochem 155:631–641. doi:10.1111/j.1432-1033.1986.tb09534.x

    Article  PubMed  CAS  Google Scholar 

  15. Wang CS, Alaupovic P, Gregg RE et al (1987) Studies on the mechanism of hypertriglyceridemia in Tangier disease. Determination of plasma lipolytic activities, k1 values and apolipoprotein composition of the major lipoprotein density classes. Biochim Biophys Acta 920:9–19

    PubMed  CAS  Google Scholar 

  16. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. doi:10.1021/ja01318a036

    Article  CAS  Google Scholar 

  17. Hofmeyr JH, Cornish-Bowden A (1996) Co-response analysis: a new experimental strategy for metabolic control analysis. J Theor Biol 182:371–380. doi:10.1006/jtbi.1996.0176

    Article  PubMed  CAS  Google Scholar 

  18. Forte TM, Krauss RM, Lindgren FT et al (1979) Changes in plasma lipoprotein distribution and formation of two unusual particles after heparin-induced lipolysis in hypertriglyceridemic subjects. Proc Natl Acad Sci USA 76:5934–5938. doi:10.1073/pnas.76.11.5934

    Article  PubMed  CAS  Google Scholar 

  19. Barrans A, Collet X, Barbaras R et al (1994) Hepatic lipase induces the formation of pre-β 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J Biol Chem 269:11572–11577

    PubMed  CAS  Google Scholar 

  20. Chung BH, Dashti N (2000) Lipolytic remnants of human VLDL produced in vitro: effect of HDL levels in the lipolysis mixtures on the apoCs to apoE ratio and metabolic properties of VLDL core remnants. J Lipid Res 41:285–297

    PubMed  CAS  Google Scholar 

  21. Dergunov AD, Smirnova EA, Merched A et al (2000) Structural peculiarities of the binding of very low density lipoproteins and low density lipoproteins to the LDL receptor in hypertriglyceridemia: role of apolipoprotein E. Biochim Biophys Acta 1484:29–40

    PubMed  CAS  Google Scholar 

  22. Petersen M, Dyrby M, Toubro S et al (2005) Quantification of lipoprotein subclasses by proton nuclear magnetic resonance-based partial least-squares regression models. Clin Chem 51:1457–1461. doi:10.1373/clinchem.2004.046748

    Article  PubMed  CAS  Google Scholar 

  23. Murdoch SJ, Breckenridge WC (1995) Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL. Atherosclerosis 118:193–212. doi:10.1016/0021-9150(95)05606-8

    Article  PubMed  CAS  Google Scholar 

  24. Murdoch SJ, Breckenridge WC (1996) Effect of lipid transfer proteins on lipoprotein lipase induced transformation of VLDL and HDL. Biochim Biophys Acta 1303:222–232

    PubMed  Google Scholar 

  25. Aalto-Setala K, Fisher EA, Chen X et al (1992) Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles. J Clin Invest 90:1889–1900. doi:10.1172/JCI116066

    Article  PubMed  CAS  Google Scholar 

  26. Aalto-Setala K, Weinstock PH, Bisgaier CL et al (1996) Further characterization of the metabolic properties of triglyceride-rich lipoproteins from human and mouse apoC-III transgenic mice. J Lipid Res 37:1802–1811

    PubMed  CAS  Google Scholar 

  27. Rye K-A, Bright R, Psaltis M et al (2006) Regulation of reconstituted high density lipoprotein structure and remodeling by apolipoprotein E. J Lipid Res 47:1025–1036. doi:10.1194/jlr.M500525-JLR200

    Article  PubMed  CAS  Google Scholar 

  28. Dergunov AD, Novoselov AV, Visvikis S et al (2005) The composition, structural properties and binding of very-low-density and low-density lipoproteins to the LDL receptor in normo- and hypertriglyceridemia: relation to the apolipoprotein E phenotype. Biol Chem 386:441–452. doi:10.1515/BC.2005.053

    Article  PubMed  CAS  Google Scholar 

  29. Morton RE, Greene DJ (1994) Regulation of lipid transfer between lipoproteins by an endogenous plasma protein: selective inhibition among lipoprotein classes. J Lipid Res 35:836–847

    PubMed  CAS  Google Scholar 

  30. Hime NJ, Drew KJ, Hahn C et al (2004) Apolipoprotein E enhances hepatic lipase-mediated hydrolysis of reconstituted high-density lipoprotein phospholipid and triacylglycerol in an isoform-dependent manner. Biochemistry 43:12306–12314. doi:10.1021/bi036305i

    Article  PubMed  CAS  Google Scholar 

  31. Fazio S, Marotti KR, Lee YL et al (1994) Co-expression of cholesteryl ester transfer protein and defective apolipoprotein E in transgenic mice alters plasma cholesterol distribution. Implications for the pathogenesis of type III hyperlipoproteinemia. J Biol Chem 269:32368–32372

    PubMed  CAS  Google Scholar 

  32. Batal R, Tremblay M, Barrett PH et al (2000) Plasma kinetics of apoC-III and apoE in normolipidemic and hypertriglyceridemic subjects. J Lipid Res 41:706–718

    PubMed  CAS  Google Scholar 

  33. Huang Y, Liu XQ, Rall SC Jr et al (1998) Apolipoprotein E2 reduces the low density lipoprotein level in transgenic mice by impairing lipoprotein lipase-mediated lipolysis of triglyceride-rich lipoproteins. J Biol Chem 273:17483–17490. doi:10.1074/jbc.273.28.17483

    Article  PubMed  CAS  Google Scholar 

  34. Zak Z, Lagrost L, Gautier T et al (2002) Expression of simian CETP in normolipidemic Fisher rats has a profound effect on large sized apoE-containing HDL. J Lipid Res 43:2164–2171. doi:10.1194/jlr.M200253-JLR200

    Article  PubMed  CAS  Google Scholar 

  35. Soderlund S, Soro-Paavonen A, Ehnholm C et al (2005) Hypertriglyceridemia is associated with preβ-HDL levels in subjects with familial low HDL. J Lipid Res 46:1643–1651. doi:10.1194/jlr.M400480-JLR200

    Article  PubMed  Google Scholar 

  36. Fielding CJ, Fielding PE (1995) Molecular physiology for reverse cholesterol transport. J Lipid Res 36:211–228

    PubMed  CAS  Google Scholar 

  37. Dergunov AD, Hoy A, Smirnova EA et al (2003) Charge-based heterogeneity of human plasma lipoproteins at hypertriglyceridemia: capillary isotachophoresis study. Int J Biochem Cell Biol 35:530–543. doi:10.1016/S1357-2725(02)00359-X

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.D.D. thanks the Russian Foundation for Basic Research for financial support, grant 07-04-00377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Dergunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dergunov, A.D., Ponthieux, A., Mel’kin, M.V. et al. Capillary isotachophoresis study of lipoprotein network sensitive to apolipoprotein E phenotype. 2. ApoE and apoC-III relations in triglyceride clearance. Mol Cell Biochem 325, 25–40 (2009). https://doi.org/10.1007/s11010-008-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0017-x

Keywords

Navigation