Skip to main content
Log in

The phosphorylation status of merlin in sporadic vestibular Schwannomas

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The events leading to Schwannomas development are still largely unknown. Some studies have demonstrated that merlin acts as a tumor suppressor by blocking Ras-mediated signaling. In this study, we analyze the clinical and biological behaviors of seven randomly selected sporadic vestibular Schwannomas removed from the patients. We find that merlin was commonly lost in these Schwannomas, due to loss of merlin expression or phosphorylation status of merlin expression. Heightened CDKs/cyclins signal transduction concomitant with loss of p27 was well correlated with loss of functional merlin in Schwannomas. More, we show that phosphorylated merlin Schwannomas exhibited increased Ras/Rac/PAK signal transduction. That was in agreement with the severe clinical behaviors, i.e., phosphorylation status of merlin increased tumor size in sporadic vestibular Schwannomas. These results led us to suggest that phosphorylated merlin, a kind of type of mutation merlin, is involved in tumorigenesis of sporadic vestibular Schwannomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gutmann DH, Aylsworth A, Carey JC et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57. doi:10.1001/jama.278.1.51

    Article  PubMed  CAS  Google Scholar 

  2. Antinheimo J, Sankila R, Carpen O et al (2000) Population-based analysis of sporadic and NF2-associated meningiomas and schwannomas. Neurology 54:71–76

    PubMed  CAS  Google Scholar 

  3. Zwarthoff EC (1996) Neurofibromatosis and associated tumor suppressor genes. Pathol Res Pract 192:647–657

    PubMed  CAS  Google Scholar 

  4. McClatchey AI, Saotome I, Mercer K et al (1998) Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12:1121–1133. doi:10.1101/gad.12.8.1121

    Article  PubMed  CAS  Google Scholar 

  5. Giovannini M, Robanus-Maandag E, van der Valk M et al (2000) Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14:1617–1630

    PubMed  CAS  Google Scholar 

  6. Murthy A, Gonzalez–Agosti C, Cordero E et al (1998) NHE-RF, a regulatory cofactor for Na+-H+ exchange, is a common interactor for merlin and ERM proteins. J Biol Chem 273:1273–1276. doi:10.1074/jbc.273.3.1273

    Article  PubMed  CAS  Google Scholar 

  7. Sainio M, Zhao F, Heiska L et al (1997) Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J Cell Sci 110:2249–2260

    PubMed  CAS  Google Scholar 

  8. Hitotsumatsu T, Iwaki T, Kitamoto T et al (1997) Expression of neurofibromatosis 2 protein in human brain tumors: an immunohistochemical study. Acta Neuropathol 93:225–232. doi:10.1007/s004010050608

    Article  PubMed  CAS  Google Scholar 

  9. Huynh DP, Mautner V, Baser ME et al (1997) Immunohistochemical detection of schwannomin and neurofibromin in vestibular Schwannomas, ependymomas and meningiomas. J Neuropathol Exp Neurol 56:382–390. doi:10.1097/00005072-199704000-00007

    Article  PubMed  CAS  Google Scholar 

  10. Stemmer-Rachamimov AO, Gonzalez-Agosti C, Xu L et al (1997) Expression of NF2-encoded merlin and related ERM family proteins in the human central nervous system. J Neuropathol Exp Neurol 56:735–742. doi:10.1097/00005072-199705000-00004

    Article  PubMed  CAS  Google Scholar 

  11. Lutchman M, Rouleau GA (1995) The neurofibromatosis type 2 gene product, schwannomin, suppresses growth of NIH 3T3 cells. Cancer Res 55:2270–2274

    PubMed  CAS  Google Scholar 

  12. Tikoo A, Varga M, Ramesh V et al (1994) An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J Biol Chem 269:23387–23390

    PubMed  CAS  Google Scholar 

  13. Morrison H, Sherman LS, Legg J et al (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15:968–980. doi:10.1101/gad.189601

    Article  PubMed  CAS  Google Scholar 

  14. Schulze KM, Hanemann CO, Muller HW, Hanenberg H (2002) Transduction of wild-type merlin into human Schwannoma cells decreases Schwannoma cell growth and induces apoptosis. Hum Mol Genet 11:69–76. doi:10.1093/hmg/11.1.69

    Article  PubMed  CAS  Google Scholar 

  15. Sherman L, Xu HM, Geist RT et al (1997) Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15:2505–2509. doi:10.1038/sj.onc.1201418

    Article  PubMed  CAS  Google Scholar 

  16. Elledge SJ, Winston J, Harper JW (1996) A question of balance: the role of cyclin-kinase inhibitors in development and tumorigenesis. Trends Cell Biol 6:388–392. doi:10.1016/0962-8924(96)10030-1

    Article  PubMed  CAS  Google Scholar 

  17. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-b-induced cell cycle arrest. Nature 371:257–261. doi:10.1038/371257a0

    Article  PubMed  CAS  Google Scholar 

  18. Harper JW, Adami GR, Wei N et al (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclindependent kinases. Cell 75:805–816. doi:10.1016/0092-8674(93)90499-G

    Article  PubMed  CAS  Google Scholar 

  19. Reynisdóttir I, Polyak K, Iavarone A, Massague J (1995) Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-b. Genes Dev 9:1831–1845. doi:10.1101/gad.9.15.1831

    Article  PubMed  Google Scholar 

  20. Tang JJ, Shen C, Lu YJ (2006) Requirement for pre-existing of p21 to prevent doxorubicin-induced apoptosis through inhibition of caspase-3 activation. Mol Cell Biochem 291:139–144. doi:10.1007/s11010-006-9206-7

    Article  PubMed  CAS  Google Scholar 

  21. Lu YJ, Tatsuka M, Takebe H, Yagi T (2000) Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol Carcinog 29:1–7 doi: 10.1002/1098-2744(200009)29:1<l::AID-MC1>3.0.CO;2-A

    Article  PubMed  Google Scholar 

  22. Lu YJ, Yamagishi N, Yagi T, Takebe H (1998) Mutated p21WAF1/CIP1/SDI1 lacking CDK-inhibitory activity fails to prevent apoptosis in human colorectal carcinoma cells. Oncogene 16:705–712. doi:10.1038/sj.onc.1201585

    Article  PubMed  CAS  Google Scholar 

  23. Morrison H, Sperka T, Manent J et al (2007) Merlin/neurofibromatosis type 2 suppresses growth by inhibiting the activation of Ras and Rac. Cancer Res 67:520–527. doi:10.1158/0008-5472.CAN-06-1608

    Article  PubMed  CAS  Google Scholar 

  24. Okada T, Lopez-Lago M, Giancotti FG (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171:361–371. doi:10.1083/jcb.200503165

    Article  PubMed  CAS  Google Scholar 

  25. Lu YJ, Yamagishi N, Miyakoshi J et al (1996) Sites and types of UV-induced mutations leading to inactivation of the growth-arresting activity in p21 (waf1)(sdi1/cip1/waf1) cDNA. Carcinogenesis 17:2343–2345. doi:10.1093/carcin/17.11.2343

    Article  PubMed  CAS  Google Scholar 

  26. Xiao GH, Gallagher R, Shetler J et al (2005) The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25:2384–2394. doi:10.1128/MCB.25.6.2384-2394.2005

    Article  PubMed  CAS  Google Scholar 

  27. Jin H, Sperka Y, Herrlich P, Morrison H (2006) Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 442:576–579. doi:10.1038/nature04856

    Article  PubMed  CAS  Google Scholar 

  28. Kim H, Lim JY, Kim YH et al (2002) Inhibition of Ras-mediated activator protein 1 activity and cell growth by merlin. Mol Cells 14:108–114

    PubMed  CAS  Google Scholar 

  29. Shaw RJ, Paez JG, Curto M et al (2001) The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1:63–72. doi:10.1016/S1534-5807(01)00009-0

    Article  PubMed  CAS  Google Scholar 

  30. Xiao GH, Beeser A, Chernoff J, Testa JR (2002) p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277:883–886. doi:10.1074/jbc.C100553200

    Article  PubMed  CAS  Google Scholar 

  31. Chadee DN, Xu DZ, Hung G et al (2006) Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 103:4463–4468. doi:10.1073/pnas.0510651103

    Article  PubMed  CAS  Google Scholar 

  32. Rong LR, Tang XL, Gutmann DH, Ye K (2004) Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE. Proc Natl Acad Sci USA 101:18200–18205. doi:10.1073/pnas.0405971102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (30672293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Additional information

Zhaoyan Wang and Yanjun Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Lu, Y., Tang, J. et al. The phosphorylation status of merlin in sporadic vestibular Schwannomas. Mol Cell Biochem 324, 201–206 (2009). https://doi.org/10.1007/s11010-008-0014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0014-0

Keywords

Navigation