Molecular and Cellular Biochemistry

, Volume 326, Issue 1–2, pp 35–43 | Cite as

Hypertriglyceridemia: phenomics and genomics



Hypertriglyceridemia is a common complex metabolic trait that is associated with increased atherosclerosis risk, presence of the metabolic syndrome and, with extreme elevation, increased risk of pancreatitis. Hierarchical cluster analysis using clinical and biochemical features of the Frederickson hyperlipoproteinemia types can generate hypotheses for molecular genetic studies. High throughput resequencing of individuals at the extremes of plasma triglyceride concentration has shown that both rare genetic variants with large effects and common genetic variants with moderate effects explain a relatively large proportion of variation. Very recent progress using high-density sets of genome-wide markers have identified additional genetic determinants of plasma triglyceride concentrations, albeit within largely normolipidemic subjects and with small effect sizes. Phenomic evaluation of patients with hypertriglyceridemia might help to clarify genotype–phenotype correlations and responses to interventions.


Lipid Lipoprotein Monogenic Complex trait Quantitative trait Chylomicron DNA mutation Single nucleotide polymorphism 


  1. 1.
    Yuan G, Al-Shali KZ, Hegele RA (2007) Hypertriglyceridemia: its etiology, effects and treatment. CMAJ 176:1113–1120. doi:10.1503/cmaj.060963 PubMedGoogle Scholar
  2. 2.
    Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707PubMedGoogle Scholar
  3. 3.
    Mahley RW, Ji ZS (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40:1–16PubMedGoogle Scholar
  4. 4.
    Breckenridge WC, Little JA, Steiner G et al (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298:1265–1273PubMedGoogle Scholar
  5. 5.
    Pennacchio LA, Olivier M, Hubacek JA et al (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173. doi:10.1126/science.1064852 PubMedCrossRefGoogle Scholar
  6. 6.
    Beigneux AP, Davies BS, Gin P et al (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291. doi:10.1016/j.cmet.2007.02.002 PubMedCrossRefGoogle Scholar
  7. 7.
    Herz J (1993) The LDL-receptor-related protein—portrait of a multifunctional receptor. Curr Opin Lipidol 4:107–113. doi:10.1097/00041433-199304000-00006 CrossRefGoogle Scholar
  8. 8.
    Criqui MH, Heiss G, Cohn R et al (1993) Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 328:1220–1225. doi:10.1056/NEJM199304293281702 PubMedCrossRefGoogle Scholar
  9. 9.
    Hokanson JE, Austin MA (1996) Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 3:213–219. doi:10.1097/00043798-199604000-00014 PubMedCrossRefGoogle Scholar
  10. 10.
    Bansal S, Buring JE, Rifai N et al (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298:309–316. doi:10.1001/jama.298.3.309 PubMedCrossRefGoogle Scholar
  11. 11.
    Nordestgaard BG, Benn M, Schnohr P et al (2007) Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308. doi:10.1001/jama.298.3.299 PubMedCrossRefGoogle Scholar
  12. 12.
    Benlian P, De Gennes JL, Foubert L et al (1996) Premature atherosclerosis in patients with familial chylomicronemia caused by mutations in the lipoprotein lipase gene. N Engl J Med 335:848–854. doi:10.1056/NEJM199609193351203 PubMedCrossRefGoogle Scholar
  13. 13.
    Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60:473–485PubMedGoogle Scholar
  14. 14.
    Santamarina-Fojo S (1998) The familial chylomicronemia syndrome. Endocrinol Metab Clin North Am 27:551–567. doi:10.1016/S0889-8529(05)70025-6 viiiPubMedCrossRefGoogle Scholar
  15. 15.
    Hegele RA (2007) Phenomics, lamin A/C, and metabolic disease. J Clin Endocrinol Metab 92:4566–4568. doi:10.1210/jc.2007-2078 PubMedCrossRefGoogle Scholar
  16. 16.
    Hegele RA, Oshima J (2007) Phenomics and lamins: from disease to therapy. Exp Cell Res 313:2134–2143. doi:10.1016/j.yexcr.2007.03.023 PubMedCrossRefGoogle Scholar
  17. 17.
    Fredrickson DS (1993) Phenotyping. On reaching base camp (1950–1975). Circulation 87:III1–III15PubMedGoogle Scholar
  18. 18.
    Hegele RA (2001) Monogenic dyslipidemias: window on determinants of plasma lipoprotein metabolism. Am J Hum Genet 69:1161–1177. doi:10.1086/324647 PubMedCrossRefGoogle Scholar
  19. 19.
    Lee JC, Lusis AJ, Pajukanta P (2006) Familial combined hyperlipidemia: upstream transcription factor 1 and beyond. Curr Opin Lipidol 17:101–109. doi:10.1097/01.mol.0000217890.54875.13 PubMedCrossRefGoogle Scholar
  20. 20.
    Walden CC, Hegele RA (1994) Apolipoprotein E in hyperlipidemia. Ann Intern Med 120:1026–1036PubMedGoogle Scholar
  21. 21.
    Tall AR (2006) Protease variants, LDL, and coronary heart disease. N Engl J Med 354:1310–1312. doi:10.1056/NEJMe068026 PubMedCrossRefGoogle Scholar
  22. 22.
    Pollex RL, Hegele RA (2007) Genetic determinants of plasma lipoproteins. Nat Clin Pract Cardiovasc Med 4:600–609. doi:10.1038/ncpcardio1005 PubMedCrossRefGoogle Scholar
  23. 23.
    Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510. doi:10.1016/S0168-9525(01)02410-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Wang WY, Barratt BJ, Clayton DG et al (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118. doi:10.1038/nrg1522 PubMedCrossRefGoogle Scholar
  25. 25.
    Yang Q, Khoury MJ, Friedman J et al (2005) How many genes underlie the occurrence of common complex diseases in the population? Int J Epidemiol 34:1129–1137. doi:10.1093/ije/dyi130 PubMedCrossRefGoogle Scholar
  26. 26.
    Busch CP, Hegele RA (2000) Variation of candidate genes in triglyceride metabolism. J Cardiovasc Risk 7:309–315PubMedGoogle Scholar
  27. 27.
    Pennacchio LA, Olivier M, Hubacek JA et al (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11:3031–3038. doi:10.1093/hmg/11.24.3031 PubMedCrossRefGoogle Scholar
  28. 28.
    Kathiresan S, Melander O, Guiducci C et al (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40:189–197. doi:10.1038/ng.75 PubMedCrossRefGoogle Scholar
  29. 29.
    Kooner JS, Chambers JC, Aguilar-Salinas CA et al (2008) Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides. Nat Genet 40:149–151. doi:10.1038/ng.2007.61 PubMedCrossRefGoogle Scholar
  30. 30.
    Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336. doi:10.1126/science.1142358 PubMedCrossRefGoogle Scholar
  31. 31.
    Willer CJ, Sanna S, Jackson AU et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40:161–169. doi:10.1038/ng.76 PubMedCrossRefGoogle Scholar
  32. 32.
    Hegele RA, Cao H, Harris SB et al (1999) The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2 diabetes in Canadian Oji-Cree. J Clin Endocrinol Metab 84:1077–1082. doi:10.1210/jc.84.3.1077 PubMedCrossRefGoogle Scholar
  33. 33.
    Triggs-Raine BL, Kirkpatrick RD, Kelly SL et al (2002) HNF-1alpha G319S, a transactivation-deficient mutant, is associated with altered dynamics of diabetes onset in an Oji-Cree community. Proc Natl Acad Sci USA 99:4614–4619. doi:10.1073/pnas.062059799 PubMedCrossRefGoogle Scholar
  34. 34.
    McKinney J, Cao H, Behme MT et al (2003) Maturity-onset diabetes of the young (MODY) mutation in type 2 diabetes and latent autoimmune diabetes of the adult. Diabetes Care 26:3358–3359. doi:10.2337/diacare.26.12.3358-a PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen J, Pertsemlidis A, Kotowski IK et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37:161–165. doi:10.1038/ng1509 PubMedCrossRefGoogle Scholar
  36. 36.
    Cohen JC, Kiss RS, Pertsemlidis A et al (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872. doi:10.1126/science.1099870 PubMedCrossRefGoogle Scholar
  37. 37.
    Romeo S, Pennacchio LA, Fu Y et al (2007) Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet 39:513–516. doi:10.1038/ng1984 PubMedCrossRefGoogle Scholar
  38. 38.
    Wang J, Cao H, Ban MR et al (2007) Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650). Arterioscler Thromb Vasc Biol 27:2450–2455. doi:10.1161/ATVBAHA.107.150680 PubMedCrossRefGoogle Scholar
  39. 39.
    Wang J, Hegele RA (2007) Homozygous missense mutation (G56R) in glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPI-HBP1) in two siblings with fasting chylomicronemia (MIM 144650). Lipids Health Dis 6:23. doi:10.1186/1476-511X-6-23 PubMedCrossRefGoogle Scholar
  40. 40.
    Gin P, Beigneux AP, Davies B et al (2007) Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution. Biochim Biophys Acta 1771:1464–1468PubMedGoogle Scholar
  41. 41.
    Eichenbaum-Voline S, Olivier M, Jones EL et al (2004) Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol 24:167–174. doi:10.1161/01.ATV.0000099881.83261.D4 PubMedCrossRefGoogle Scholar
  42. 42.
    Evans D, Seedorf U, Beil FU (2005) Polymorphisms in the apolipoprotein A5 (APOA5) gene and type III hyperlipidemia. Clin Genet 68:369–372. doi:10.1111/j.1399-0004.2005.00510.x PubMedCrossRefGoogle Scholar
  43. 43.
    Henneman P, Schaap FG, Havekes LM et al (2007) Plasma apoAV levels are markedly elevated in severe hypertriglyceridemia and positively correlated with the APOA5 S19W polymorphism. Atherosclerosis 193:129–134. doi:10.1016/j.atherosclerosis.2006.05.030 PubMedCrossRefGoogle Scholar
  44. 44.
    Hubacek JA, Horinek A, Skodova Z et al (2005) Hypertriglyceridemia: interaction between APOE and APOAV variants. Clin Chem 51:1311–1313. doi:10.1373/clinchem.2005.048439 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Schulich School of Medicine and DentistryUniversity of Western OntarioLondonCanada
  2. 2.Vascular Biology Research GroupRobarts Research InstituteLondonCanada
  3. 3.Blackburn Cardiovascular Genetics LaboratoryRobarts Research InstituteLondonCanada

Personalised recommendations