Skip to main content
Log in

I-FABP expression alters the intracellular distribution of the BODIPY C16 fatty acid analog

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To investigate the structure–function relationships of intestinal fatty acid-binding protein (I-FABP) in cellular fatty acid (FA) trafficking, we compared the distribution of a fluorescent FA analog (BODIPY FL C16) in Cos-1 cells transiently transfected with the wild type protein (wt I-FABP) to that of a variant deleted of the alpha helical domain (HL I-FABP). In vector-only cells, BODIPY fluorescence was distributed throughout the cytoplasm. In the absence of added FA, wt I-FABP was found largely in the perinuclear region with some cytoplasmic staining as well. Addition of BODIPY FL C16 to transfected cells showed that the fluorescent FA was essentially completely colocalized with the protein in the cytoplasmic and perinuclear regions as well as in cytoplasmic clusters that are not observed in the absence of wt I-FABP. For HL I-FABP, the distribution of the protein in the absence of FA was diffusely cytoplasmic, in marked contrast to the wt protein. Addition of BODIPY led to less extensive colocalization than that observed for wt I-FABP. In particular, no localization to the perinuclear region was found. Organelle colocalization studies showed that both proteins colocalized with mitochondria and endoplasmic reticulum/golgi markers, but little with a lysosomal marker. The perinuclear localization for wt I-FABP and BODIPY did not show colocalization with any of the markers tested. Taken together, these results indicate that I-FABP binds FA in vivo and that the helical domain may be important for targeting I-FABP to a perinuclear domain but not, perhaps, to the endoplasmic reticulum, golgi apparatus or mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BODIPY FL C16:

4,4-difluoro-5,7-dimethyl-4-bora-3a, 4adiaza-s-indacene-3-hexadecanoic acid

References

  1. Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene transcription? Biochem Pharmacol 64:893–901. doi:10.1016/S0006-2952(02)01157-7

    Article  PubMed  CAS  Google Scholar 

  2. Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59:1096–1116. doi:10.1007/s00018-002-8490-y

    Article  PubMed  CAS  Google Scholar 

  3. Storch J, Thumser AE (2000) The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta 1486:28–44

    PubMed  CAS  Google Scholar 

  4. Wolfrum C, Borrmann CM, Borchers T et al (2001) Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha- and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci USA 98:2323–2328. doi:10.1073/pnas.051619898

    Article  PubMed  CAS  Google Scholar 

  5. Tan NS, Shaw NS, Vinckenbosch N et al (2002) Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. Mol Cell Biol 22:5114–5127. doi:10.1128/MCB.22.14.5114-5127.2002

    Article  PubMed  CAS  Google Scholar 

  6. Adida A, Spener F (2006) Adipocyte-type fatty acid-binding protein as inter-compartmental shuttle for peroxisome proliferator activated receptor gamma agonists in cultured cell. Biochim Biophys Acta 1761:172–181

    PubMed  CAS  Google Scholar 

  7. Besnard P, Niot I, Poirier H et al (2002) New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem 239:139–147. doi:10.1023/A:1020505512364

    Article  PubMed  CAS  Google Scholar 

  8. Agellon LB, Toth MJ, Thomson AB (2002) Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem 239:79–82. doi:10.1023/A:1020520521025

    Article  PubMed  CAS  Google Scholar 

  9. Banaszak L, Winter N, Xu Z et al (1994) Lipid-binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 45:89–151. doi:10.1016/S0065-3233(08)60639-7

    Article  PubMed  CAS  Google Scholar 

  10. Gedde-Dahl A, Kulseth MA, Ranheim T et al (2002) Reduced secretion of triacylglycerol in CaCo-2 cells transfected with intestinal fatty acid-binding protein. Lipids 37:61–68. doi:10.1007/s11745-002-0864-8

    Article  PubMed  CAS  Google Scholar 

  11. Glatz JF, Storch J (2001) Unravelling the significance of cellular fatty acid-binding proteins. Curr Opin Lipidol 12:267–274. doi:10.1097/00041433-200106000-00005

    Article  PubMed  CAS  Google Scholar 

  12. Neeli I, Siddiqi SA, Siddiqi S et al (2007) Liver fatty acid-binding protein initiates budding of pre-chylomicron transport vesicles from intestinal endoplasmic reticulum. J Biol Chem 282:17974–17984. doi:10.1074/jbc.M610765200

    Article  PubMed  CAS  Google Scholar 

  13. Vassileva G, Huwyler L, Poirier K et al (2000) The intestinal fatty acid binding protein is not essential for dietary fat absorption in mice. FASEB J 14:2040–2046. doi:10.1096/fj.99-0959com

    Article  PubMed  CAS  Google Scholar 

  14. Agellon LB, Li L, Luong L et al (2006) Adaptations to the loss of intestinal fatty acid binding protein in mice. Mol Cell Biochem 284:159–166. doi:10.1007/s11010-005-9042-1

    Article  PubMed  CAS  Google Scholar 

  15. Luxon BA, Weisiger RA (1993) Sex differences in intracellular fatty acid transport: role of cytoplasmic binding proteins. Am J Physiol 265:G831–G841

    PubMed  CAS  Google Scholar 

  16. Thumser AE, Storch J (2006) Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Mol Cell Biochem 299:67–73. doi:10.1007/s11010-005-9041-2

    Article  Google Scholar 

  17. Kim K, Cistola DP, Frieden C (1996) Intestinal fatty acid-binding protein: the structure and stability of a helix-less variant. Biochemistry 35:7553–7558. doi:10.1021/bi9529115

    Article  PubMed  CAS  Google Scholar 

  18. Storch J (2001) The role of fatty acid-binding proteins in enterocytes fatty acid transport. In: Manbach C, Kuksis A, Tso P (ed) Intestinal lipid metabolism, 1st edn. Kluwer Academic Raven Press, New York

    Google Scholar 

  19. Trotter PJ, Storch J (1991) Fatty acid uptake and metabolism in a human intestinal cell line (Caco-2): comparison of apical and basolateral incubation. J Lipid Res 32:293–304

    PubMed  CAS  Google Scholar 

  20. Sweetser DA, Birkenmeier EH, Klisak IJ et al (1987) The human and rodent intestinal fatty acid binding protein genes: a comparative analysis of their structure, expression, and linkage relationships. J Biol Chem 262:16060–16071

    PubMed  CAS  Google Scholar 

  21. Baier LJ, Bogardus C, Sacchettini JC (1996) A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco-2 cells. J Biol Chem 271:10892–10896. doi:10.1074/jbc.271.20.11689

    Article  PubMed  CAS  Google Scholar 

  22. Alpers DH, Bass NM, Engle MJ et al (2000) Intestinal fatty acid binding protein may favor differential apical fatty acid binding in the intestine. Biochim Biophys Acta 1483:352–362

    PubMed  CAS  Google Scholar 

  23. Lawrence JW, Kroll DJ, Eacho PI (2000) Ligand-dependent interaction of hepatic fatty acid-binding protein with the nucleus. J Lipid Res 41:1390–1401

    PubMed  CAS  Google Scholar 

  24. Corsico B, Franchini GR, Hsu KT et al (2005) Fatty acid transfer from intestinal fatty acid binding protein to membranes: electrostatic and hydrophobic interactions. J Lipid Res 46:1765–1772. doi:10.1194/jlr.M500140-JLR200

    Article  PubMed  CAS  Google Scholar 

  25. Corsico B, Liou HL, Storch J (2004) The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes. Biochemistry 43:3600–3607. doi:10.1021/bi0357356

    Article  PubMed  CAS  Google Scholar 

  26. Corsico B, Cistola DP, Frieden C et al (1998) The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes. Proc Natl Acad Sci USA 95:12174–12178. doi:10.1073/pnas.95.21.12174

    Article  PubMed  CAS  Google Scholar 

  27. Cistola DP, Kim K, Rogl H et al (1996) Fatty acid interactions with a helix-less variant of intestinal fatty acid-binding protein. Biochemistry 35:7559–7565. doi:10.1021/bi952912x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.S. was the recipient of a Poste-Orange fellowship from INSERM (National Institute of Health and Medical Research). This work was supported in part by U.S. Public Health Service NIH grant DK38389 (J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marguerite Gastaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsenty, J., Helal, O., Lechène de la Porte, P. et al. I-FABP expression alters the intracellular distribution of the BODIPY C16 fatty acid analog. Mol Cell Biochem 326, 97–104 (2009). https://doi.org/10.1007/s11010-008-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-0004-2

Keywords

Navigation