Skip to main content
Log in

Chymase induces profibrotic response via transforming growth factor-β1/Smad activation in rat cardiac fibroblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mast cell-derived chymase is implicated in myocardial fibrosis (MF), but the underlying mechanism of intracellular signaling remains unclear. Transforming growth factor-β1 (TGF-β1) is identified as the most important profibrotic cytokine, and Smad proteins are essential, but not exclusive downstream components of TGF-β1 signaling. Moreover, novel evidence indicates that there is a cross talk between Smad and mitogen-activated protein kinase (MAPK) signaling cascade. We investigated whether chymase activated TGF-β1/Smad pathway and its potential role in MF by evaluating cardiac fibroblasts (CFs) proliferation and collagen synthesis in neonatal rats. MTT assay and 3H-Proline incorporation revealed that chymase induced CFs proliferation and collagen synthesis in a dose-dependent manner. RT-PCR and Western blot assay demonstrated that chymase not only increased TGF-β1 expression but also upregulated phosphorylated-Smad2/3 protein. Furthermore, pretreatment with TGF-β1 neutralizing antibody suppressed chymase-induced cell growth, collagen production, and Smad activation. In contrast, the blockade of angiotensin II receptor had no effects on chymase-induced production of TGF-β1 and profibrotic action. Additionally, the inhibition of MAPK signaling had no effect on Smad activation elicited by chymase. These results suggest that chymase can promote CFs proliferation and collagen synthesis via TGF-β1/Smad pathway rather than angiotensin II, which is implicated in the process of MF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brilla CG, Funck RC, Rupp H (2000) Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 102:1388–1393

    PubMed  CAS  Google Scholar 

  2. Okada H, Takemura G, Kosai K et al (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111:2430–2437

    Article  PubMed  CAS  Google Scholar 

  3. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  PubMed  CAS  Google Scholar 

  4. Samuel CS, Unemori EN, Mookerjee I et al (2004) Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo. Endocrinology 145:4125–4133

    Article  PubMed  CAS  Google Scholar 

  5. Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71:418–435

    Article  PubMed  CAS  Google Scholar 

  6. Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991

    Article  PubMed  Google Scholar 

  7. Holweg CT, Baan CC, Niesters HG et al (2001) TGF-beta1 gene polymorphisms in patients with end-stage heart failure. J Heart Lung Transplant 20:979–984

    Article  PubMed  CAS  Google Scholar 

  8. Urata H, Kinoshita A, Misono KS et al (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    PubMed  CAS  Google Scholar 

  9. Urata H, Healy B, Stewart RW et al (1990) Angiotensin II-forming pathways in normal and failing heart. Circ Res 66:883–887

    PubMed  CAS  Google Scholar 

  10. Li P, Chen PM, Wang SW et al (2002) Time-dependent expression of chymase and angiotensin converting enzyme in the hamster heart under pressure overload. Hypertens Res 25:757–762

    Article  PubMed  CAS  Google Scholar 

  11. Balcells E, Meng QC, Johnson WHJ et al (1997) Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol 273:H1769–H1774

    PubMed  CAS  Google Scholar 

  12. Lindstedt KA, Wang Y, Shiota N et al (2001) Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J 15:1377–1388

    Article  PubMed  CAS  Google Scholar 

  13. Guo C, Ju H, Leung D et al (2001) A novel vascular smooth muscle chymase is upregulated in hypertensive rats. J Clin Invest 107:703–715

    Article  PubMed  CAS  Google Scholar 

  14. Shiota N, Jin D, Takai S et al (1997) Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett 406:301–304

    Article  PubMed  CAS  Google Scholar 

  15. Wang Y, Shiota N, Leskinen MJ et al (2001) Mast cell chymase inhibits smooth muscle cell growth and collagen expression in vitro: transforming growth factor-beta1-dependent and -independent effects. Arterioscler Thromb Vasc Biol 21:1928–1933

    Article  PubMed  CAS  Google Scholar 

  16. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  PubMed  CAS  Google Scholar 

  17. Li G, Li RK, Mickle DA et al (1998) Elevated insulin-like growth factor-І and transforming growth factor-beta1 and their receptors in patients with idiopathic hypertrophic obstructive cardiomyopathy: a possible mechanism. Circulation 98:144–149

    CAS  Google Scholar 

  18. Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63:423–432

    Article  PubMed  CAS  Google Scholar 

  19. Akiyama-Uchida Y, Ashizawa N, Ohtsuru A et al (2002) Norepinephrine enhances fibrosis mediated by TGF-β in cardiac fibroblasts. Hypertension 40:148–154

    Article  PubMed  CAS  Google Scholar 

  20. Braun MU, Mochly-Rosen D (2003) Opposing effects of delta- and zeta-protein kinase C isozymes on cardiac fibroblast proliferation: use of isozyme-selective inhibitors. J Mol Cell Cardiol 35:895–903

    Article  PubMed  CAS  Google Scholar 

  21. Li PF, Dietz R, Harsdorf R et al (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-β1 in cardiac fibroblasts. FEBS Lett 448:206–210

    Article  PubMed  CAS  Google Scholar 

  22. Kapoun AM, Liang F, O’Young G et al (2004) B-Type natriuretic peptide exerts broad functional opposition to transforming growth factor-β in primary human cardiac fibroblasts-fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461

    Article  PubMed  CAS  Google Scholar 

  23. Petrov VV, Fagard RH, Lijnen PJ (2002) Stimulation of collagen production by transforming growth factor-beta1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension 39:258–263

    Article  PubMed  CAS  Google Scholar 

  24. Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296:1646–1647

    Article  PubMed  CAS  Google Scholar 

  25. Euler-Taimor G, Heger J (2006) The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res 69:15–25

    Article  PubMed  CAS  Google Scholar 

  26. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  27. Schorb W, Booz GW, Dostal DE et al (1993) Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72:1245–1254

    PubMed  CAS  Google Scholar 

  28. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  29. Lindstedt KA (1993) Inhibition of macrophage-mediated low density lipoprotein oxidation by stimulated rat serosal mast cells. J Biol Chem 268:7741–7746

    PubMed  CAS  Google Scholar 

  30. Lindstedt L, Lee M, Castro GR et al (1996) Chymase in exocytosed rat mast cell granules effectively proteolyzes apolipoprotein A І-containing lipoproteins, so reducing the cholesterol efflux-inducing ability of serum and aortic intimal fluid. J Clin Invest 97:2174–2182

    PubMed  CAS  Google Scholar 

  31. Rahimi RA, Leof EB (2007) TGF-β signaling: a tale of two responses. J Cell Biochem 102:593–608

    Article  PubMed  CAS  Google Scholar 

  32. Agocha A, Sigel AV, Eghbali-Webb M (1996) Characterization of adult human heart fibroblasts in culture: a comparative study of growth, proliferation and collagen production in human and rabbit cardiac fibroblasts and their response to transforming growth factor-beta1. Cell Tissue Res 288:87–93

    Article  Google Scholar 

  33. Sigel AV, Centrella M, Eghbali-Webb M (1996) Autocrine and exogenous transforming growth factor-β regulate proliferative response of cardiac fibroblasts. J Mol Cell Cardiol 28:1921–1929

    Article  PubMed  CAS  Google Scholar 

  34. Derynck R, Akhurst RJ, Balmain A (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29:117–129

    Article  PubMed  CAS  Google Scholar 

  35. Ghahary A, Tredget EE, Ghahary A et al (2002) Cell proliferating effect of latent transforming growth factor-beta1 is cell membrane dependent. Wound Repair Regen 10:328–335

    Article  PubMed  Google Scholar 

  36. Mori Y, Chen SJ, Varga J (2000) Modulation of endogenous Smad expression in normal skin fibroblasts by transforming growth factor-beta. Exp Cell Res 258:374–383

    Article  PubMed  CAS  Google Scholar 

  37. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V et al (2005) Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 111:2509–2517

    Article  PubMed  CAS  Google Scholar 

  38. Wang FM, Hu T, Tan H et al (2006) p38 Mitogen-activated protein kinase affects transforming growth factor-β/Smad signaling in human dental pulp cells. Mol Cell Biochem 291:49–54

    Article  PubMed  CAS  Google Scholar 

  39. Dziembowska M, Danilkiewicz M, Wesolowska A et al (2007) Cross-talk between Smad and p38 MAPK signaling in transforming growth factor beta signal transduction in human glioblastoma cells. Biochem Biophys Res Commun 354:1101–1106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Fa-Gen Lv, Hui Liu and Shao-Wei Liu for their kindly technical assistance and helpful suggestions. We also thank Li-Juan Li and Shu-Qing Ding for their careful proofreading on grammatical English of the manuscript. Especially, we are very indebted to Dr. Dhalla and reviewers for their comments on our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-You Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XY., Zhao, LY., Zheng, QS. et al. Chymase induces profibrotic response via transforming growth factor-β1/Smad activation in rat cardiac fibroblasts. Mol Cell Biochem 310, 159–166 (2008). https://doi.org/10.1007/s11010-007-9676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9676-2

Keywords

Navigation