Skip to main content
Log in

Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This review describes a comprehensive analysis of a surface plasmon resonance (SPR)-based biosensor study of molecular interactions in the insulin-like growth factor (IGF) molecular axis. In this study, we focus on the interaction between the polypeptide growth factors IGF-I and IGF-II with six soluble IGF binding proteins (IGFBP 1-6), which occur naturally in various biological fluids. We have describe the conditions required for the accurate determination of kinetic rate constants for these interactions and highlight the experimental and theoretical pitfalls, which may be encountered in the early stages of such a study. We focus on IGFBP-5 and describe a site-directed mutagenesis study, which examines the contribution of various residues in the protein to high affinity interaction with IGF-I and -II. We analyse the interaction of IGFBP-5 (and IGFBP-3) with heparin and other biomolecules and describe experiments, which were designed to monitor multi-protein complex formation in this molecular axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hahnefeld C, Drewianka S, Herberg FW (2004) Determination of kinetic data using surface plasmon resonance biosensors. Methods Mol Med 94:299–320

    PubMed  CAS  Google Scholar 

  2. Rich RL, Myszka DG (2005) Survey of the year 2003 commercial optical biosensor literature. J Mol Recognit 18:1–39

    Article  PubMed  CAS  Google Scholar 

  3. Schuck P, Minton AP (1996) Analysis of mass transport-limited binding kinetics in evanescent wave biosensors. Anal Biochem 240:262–272

    Article  PubMed  CAS  Google Scholar 

  4. Wu SJ, Chaiken I (2004) Biosensor analysis of receptor–ligand interactions. Methods Mol Biol 249:93–110

    PubMed  CAS  Google Scholar 

  5. Choulier L, Andersson K, Hamalainen MD, van Regenmortel MH, Malmqvist M, Altschuh D (2002) QSAR studies applied to the prediction of antigen-antibody interaction kinetics as measured by BIACORE. Protein Eng 15:373–382

    Article  PubMed  CAS  Google Scholar 

  6. Hamalainen MD, Markgren PO, Schaal W, Karlen A, Classon B, Vrang L, Samuelsson B, Hallberg A, Danielson UH (2000) Characterization of a set of HIV-1 protease inhibitors using binding kinetics data from a biosensor-based screen. J Biomol Screen 5:353–360

    Article  PubMed  CAS  Google Scholar 

  7. Markey F (2000) Principles of surface plasmon resonance. In: Handa KNH (ed) Real-time analysis of biomolecular interactions. Springer-Verlag, Tokyo, pp 13–22

    Google Scholar 

  8. Beattie J, Phillips K, Shand JH, Szymanowska M, Flint DJ, Allan GJ (2005) Molecular recognition characteristics in the insulin-like growth factor (IGF)-insulin-like growth factor binding protein -3/5 (IGFBP-3/5) heparin axis. J Mol Endocrinol 34:163–175

    Article  PubMed  CAS  Google Scholar 

  9. Camacho-Hubner C, Busby WH Jr, McCusker RH, Wright G, Clemmons DR (1992) Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion. J Biol Chem 267:11949–11956

    PubMed  CAS  Google Scholar 

  10. Kiefer MC, Schmid C, Waldvogel M, Schlapfer I, Futo E, Masiarz FR, Green K, Barr PJ, Zapf J (1992) Characterization of recombinant human insulin-like growth factor binding proteins 4, 5, and 6 produced in yeast. J Biol Chem 267:12692–12699

    PubMed  CAS  Google Scholar 

  11. Carrick FE, Forbes BE, Wallace JC (2001) BIAcore analysis of bovine insulin-like growth factor (IGF)-binding protein-2 identifies major IGF binding site determinants in both the amino- and carboxyl-terminal domains. J Biol Chem 276:27120–27128

    Article  PubMed  CAS  Google Scholar 

  12. Galanis M, Firth SM, Bond J, Nathanielsz A, Kortt AA, Hudson PJ, Baxter RC (2001) Ligand-binding characteristics of recombinant amino- and carboxyl- terminal fragments of human insulin-like growth factor-binding protein- 3. J Endocrinol 169:123–133

    Article  PubMed  CAS  Google Scholar 

  13. Headey SJ, Leeding KS, Norton RS, Bach LA (2004) Contributions of the N- and C-terminal domains of IGF binding protein-6 to IGF binding. J Mol Endocrinol 33:377–386

    Article  PubMed  CAS  Google Scholar 

  14. Heding A, Gill R, Ogawa Y, De Meyts P, Shymko RM (1996) Biosensor measurement of the binding of insulin-like growth factors I and II and their analogues to the insulin-like growth factor-binding protein-3. J Biol Chem 271:13948–13952

    Article  PubMed  CAS  Google Scholar 

  15. Hobba GD, Lothgren A, Holmberg E, Forbes BE, Francis GL, Wallace JC (1998) Alanine screening mutagenesis establishes tyrosine 60 of bovine insulin- like growth factor binding protein-2 as a determinant of insulin-like growth factor binding. J Biol Chem 273:19691–19698

    Article  PubMed  CAS  Google Scholar 

  16. Jansson M, Uhlen M, Nilsson B (1997) Structural changes in insulin-like growth factor (IGF) I mutant proteins affecting binding kinetic rates to IGF binding protein 1 and IGF-I receptor. Biochemistry 36:4108–4117

    Article  PubMed  CAS  Google Scholar 

  17. Robinson SA, Rosenzweig SA (2004) Synthesis and characterization of biotinylated forms of insulin-like growth factor-1: topographical evaluation of the IGF-1/IGFBP-2 AND IGFBP-3 interface. Biochemistry 43:11533–11545

    Article  PubMed  CAS  Google Scholar 

  18. Shen B, Shimmon S, Smith MM, Ghosh P (2003) Biosensor analysis of the molecular interactions of pentosan polysulfate and of sulfated glycosaminoglycans with immobilized elastase, hyaluronidase and lysozyme using surface plasmon resonance (SPR) technology. J Pharm Biomed Anal 31:83–93

    Article  PubMed  CAS  Google Scholar 

  19. Standker L, Braulke T, Mark S, Mostafavi H, Meyer M, Honing S, Gimenez-Gallego G, Forssmann WG (2000) Partial IGF affinity of circulating N- and C-terminal fragments of human insulin-like growth factor binding protein-4 (IGFBP-4) and the disulfide bonding pattern of the C-terminal IGFBP-4 domain. Biochemistry 39:5082–5088

    Article  PubMed  CAS  Google Scholar 

  20. Vorwerk P, Hohmann B, Oh Y, Rosenfeld RG, Shymko RM (2002) Binding properties of insulin-like growth factor binding protein-3 (IGFBP-3), IGFBP-3 N- and C-terminal fragments, and structurally related proteins mac25 and connective tissue growth factor measured using a biosensor. Endocrinology 143:1677–1685

    Article  PubMed  CAS  Google Scholar 

  21. Wong MS, Fong CC, Yang M (1999) Biosensor measurement of the interaction kinetics between insulin-like growth factors and their binding proteins. Biochim Biophys Acta 1432:293–301

    PubMed  CAS  Google Scholar 

  22. Yan X, Forbes BE, McNeil KA, Baxter RC, Firth SM (2004) Role of N- and C-terminal residues of insulin-like growth factor (IGF)-binding protein-3 in regulating IGF complex formation and receptor activation. J Biol Chem 279:53232–53240

    Article  PubMed  CAS  Google Scholar 

  23. Firth SM, Baxter RC (1995) The role of glycosylation in the action of IGFBP-3. Prog Growth Factor Res 6:223–229

    Article  PubMed  CAS  Google Scholar 

  24. Song H, Shand JH, Beattie J, Flint DJ, Allan GJ (2001) The carboxy-terminal domain of IGF-binding protein-5 inhibits heparin binding to a site in the central domain. J Mol Endocrinol 26:229–239

    Article  PubMed  CAS  Google Scholar 

  25. Fowlkes JL, Serra D (1996) A rapid, non-radioactive method for the detection of insulin-like growth factor binding proteins by Western ligand blotting. Endocrinology 137:5751–5754

    Article  PubMed  CAS  Google Scholar 

  26. Francis GL, Aplin SE, Milner SJ, McNeil KA, Ballard FJ, Wallace JC (1993) Insulin-like growth factor (IGF)-II binding to IGF-binding proteins and IGF receptors is modified by deletion of the N-terminal hexapeptide or substitution of arginine for glutamate-6 in IGF-II. Biochem J 293(Pt 3):713–719

    PubMed  CAS  Google Scholar 

  27. Tomas FM, Knowles SE, Owens PC, Read LC, Chandler CS, Gargosky SE, Ballard FJ (1991) Effects of full-length and truncated insulin-like growth factor-I on nitrogen balance and muscle protein metabolism in nitrogen-restricted rats. J Endocrinol 128:97–105

    Article  PubMed  CAS  Google Scholar 

  28. Moralez A, Busby WH Jr, Clemmons D (2003) Control of insulin-like growth factor binding protein-5 protease synthesis and secretion by human fibroblasts and porcine aortic smooth muscle cells. Endocrinology 144:2489–2495

    Article  PubMed  CAS  Google Scholar 

  29. Soe R, Overgaard MT, Thomsen AR, Laursen LS, Olsen IM, Sottrup-Jensen L, Haaning J, Giudice LC, Conover CA, Oxvig C (2002) Expression of recombinant murine pregnancy-associated plasma protein-A (PAPP-A) and a novel variant (PAPP-Ai) with differential proteolytic activity. Eur J Biochem 269:2247–2256

    Article  PubMed  CAS  Google Scholar 

  30. Payet LD, Wang XH, Baxter RC, Firth SM (2003) Amino- and carboxyl-terminal fragments of insulin-like growth factor (IGF) binding protein-3 cooperate to bind IGFs with high affinity and inhibit IGF receptor interactions. Endocrinology 144:2797–2806

    Article  PubMed  CAS  Google Scholar 

  31. Bach LA, Thotakura NR, Rechler MM (1992) Human insulin-like growth factor binding protein-6 is O-glycosylated. Biochem Biophys Res Commun 186:301–307

    Article  PubMed  CAS  Google Scholar 

  32. Marinaro JA, Jamieson GP, Hogarth PM, Bach LA (1999) Differential dissociation kinetics explain the binding preference of insulin-like growth factor binding protein-6 for insulin-like growth factor-II over insulin-like growth factor-I. FEBS Lett 450:240–244

    Article  PubMed  CAS  Google Scholar 

  33. Kalus W, Zweckstetter M, Renner C, Sanchez Y, Georgescu J, Grol M, Demuth D, Schumacher R, Dony C, Lang K, Holak TA (1998) Structure of the IGF-binding domain of the insulin-like growth factor- binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions. Embo J 17:6558–6572

    Article  PubMed  CAS  Google Scholar 

  34. Shand JH, Beattie J, Song H, Phillips K, Kelly SM, Flint DJ, Allan GJ (2003) Specific amino acid substitutions determine the differential contribution of the N- and C-terminal domains of insulin-like growth factor (IGF)-binding protein-5 in binding IGF-I. J Biol Chem 278:17859–17866

    Article  PubMed  CAS  Google Scholar 

  35. Song H, Beattie J, Campbell IW, Allan GJ (2000) Overlap of IGF- and heparin-binding sites in rat IGF-binding protein-5. J Mol Endocrinol 24:43–51

    Article  PubMed  CAS  Google Scholar 

  36. Arai T, Parker A, Busby W Jr, Clemmons DR (1994) Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J Biol Chem 269:20388–20393

    PubMed  CAS  Google Scholar 

  37. Arai T, Busby W Jr, Clemmons DR (1996) Binding of insulin-like growth factor (IGF) I or II to IGF-binding protein-2 enables it to bind to heparin and extracellular matrix. Endocrinology 137:4571–4575

    Article  PubMed  CAS  Google Scholar 

  38. Ishikawa E, Imagawa M, Hashida S, Yoshitake S, Hamaguchi Y, Ueno T (1983) Enzyme-labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J Immunoassay 4:209–327

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki H, Hayashi A, Kitagaki-Ogawa H, Matsumoto I, Seno N (1987) Improved method for the immobilization of heparin. J Chromatogr 400:123–132

    Article  PubMed  CAS  Google Scholar 

  40. Osmond RI, Kett WC, Skett SE, Coombe DR (2002) Protein-heparin interactions measured by BIAcore 2000 are affected by the method of heparin immobilization. Anal Biochem 310:199–207

    Article  PubMed  CAS  Google Scholar 

  41. Gopalakrishnan M, Forsten-Williams K, Cassino TR, Padro L, Ryan TE, Tauber UC (2005) Ligand rebinding: self-consistent mean-field theory and numerical simulations applied to surface plasmon resonance studies. Eur Biophys J 34:943–958

    Article  PubMed  CAS  Google Scholar 

  42. Arai T, Arai A, Busby WH Jr, Clemmons DR (1994) Glycosaminoglycans inhibit degradation of insulin-like growth factor- binding protein-5. Endocrinology 135:2358–2363

    Article  PubMed  CAS  Google Scholar 

  43. Conover CA (1991) A unique receptor-independent mechanism by which insulinlike growth factor I regulates the availability of insulin like growth factor binding proteins in normal and transformed human fibroblasts. J Clin Invest 88:1354–1361

    Article  PubMed  CAS  Google Scholar 

  44. Martin JL, Ballesteros M, Baxter RC (1992) Insulin-like growth factor-I (IGF-I) and transforming growth factor-beta 1 release IGF-binding protein-3 from human fibroblasts by different mechanisms. Endocrinology 131:1703–1710

    Article  PubMed  CAS  Google Scholar 

  45. Nam TJ, Busby W Jr, Clemmons DR (1997) Insulin-like growth factor binding protein-5 binds to plasminogen activator inhibitor-I. Endocrinology 138:2972–2978

    Article  PubMed  CAS  Google Scholar 

  46. Lochrie JD, Phillips K, Tonner E, Flint DJ, Allan GJ, Price NC, Beattie J (2006) Insulin-like growth factor binding protein (IGFBP)-5 is upregulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J Cell Physiol 207:471–479

    Article  PubMed  CAS  Google Scholar 

  47. Sorrell AM, Shand JH, Tonner E, Gamberoni M, Accorsi PA, Beattie J, Allan GJ, Flint DJ (2006) Insulin-like growth factor-binding protein-5 activates plasminogen by interaction with tissue plasminogen activator, independently of its ability to bind to plasminogen activator inhibitor-1, insulin-like growth factor-I, or heparin. J Biol Chem 281:10883–10889

    Article  PubMed  CAS  Google Scholar 

  48. Ishino T, Pillalamarri U, Panarello D, Bhattacharya M, Urbina C, Horvat S, Sarkhel S, Jameson B, Chaiken I (2006) Asymmetric usage of antagonist charged residues drives interleukin-5 receptor recruitment but is insufficient for receptor activation. Biochemistry 45:1106–1115

    Article  PubMed  CAS  Google Scholar 

  49. Amaar YG, Baylink DJ, Mohan S (2005) Ras-association domain family 1 protein, RASSF1C, is an IGFBP-5 binding partner and a potential regulator of osteoblast cell proliferation. J Bone Miner Res 20:1430–1439

    Article  PubMed  CAS  Google Scholar 

  50. Amaar YG, Thompson GR, Linkhart TA, Chen ST, Baylink DJ, Mohan S (2002) Insulin-like growth factor-binding protein 5 (IGFBP-5) interacts with a four and a half LIM protein 2 (FHL2). J Biol Chem 277:12053–12060

    Article  PubMed  CAS  Google Scholar 

  51. Campbell PG, Andress DL (1997) Insulin-like growth factor (IGF)-binding protein-5-(201–218) region regulates hydroxyapatite and IGF-I binding. Am J Physiol 273:E1005–E1013

    PubMed  CAS  Google Scholar 

  52. Flint DJ, Tonner E, Allan GJ (2000) Insulin-like growth factor binding proteins: IGF-dependent and -independent effects in the mammary gland. J Mammary Gland Biol Neoplasia 5:65–73

    Article  PubMed  CAS  Google Scholar 

  53. Nam TJ, Busby WH Jr, Rees C, Clemmons DR (2000) Thrombospondin and osteopontin bind to insulin-like growth factor (IGF)-binding protein-5 leading to an alteration in IGF-I-stimulated cell growth. Endocrinology 141:1100–1106

    Article  PubMed  CAS  Google Scholar 

  54. Beattie J, Allan GJ, Lochrie JD, Flint DJ (2006) Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 395:1–19

    Article  PubMed  CAS  Google Scholar 

  55. Imai Y, Moralez A, Andag U, Clarke JB, Busby WH Jr, Clemmons DR (2000) Substitutions for hydrophobic amino acids in the N-terminal domains of IGFBP-3 and -5 markedly reduce IGF-I binding and alter their biologic actions. J Biol Chem 275:18188–18194

    Article  PubMed  CAS  Google Scholar 

  56. Allan GJ, Tonner E, Szymanowska M, Shand JH, Kelly SM, Phillips K, Clegg RA, Gow IF, Beattie J, Flint DJ (2006) Cumulative mutagenesis of the basic residues in the 201–218 region of insulin-like growth factor (IGF)-binding protein-5 results in progressive loss of both IGF-I binding and inhibition of IGF-I biological action. Endocrinology 147:338–349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Scottish Executive Environmental and Rural Affairs Department (SEERAD) via a Transitional Funding Award to the Strathclyde Institute for Pharmacy and Biomedical Research (SIBPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Beattie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beattie, J., Phillips, K., Shand, J.H. et al. Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Mol Cell Biochem 307, 221–236 (2008). https://doi.org/10.1007/s11010-007-9601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9601-8

Keywords

Navigation