Skip to main content
Log in

Thyroid hormone regulates the expression of SNAP-25 during rat brain development

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thyroid hormones are major regulators of postnatal brain development. Thyroid hormones act through nuclear receptors to modulate the expression of specific genes in the brain. We have used microarray analysis to identify novel responsive genes in 14-day-old hypothyroid rat brains, and discovered that synaptosomal-associated protein of 25 kDa (SNAP-25) was one of the thyroid hormone-responsive genes. SNAP-25 is a presynaptic plasma membrane protein and an integral component of the vesicle docking and fusion machinery mediating secretion of neurotransmitters and is required for neuritic outgrowth and synaptogenesis. Using microarray analysis we have shown that SNAP-25 was down-regulated in the hypothyroid rat brain compared with the age-matched controls. Real-time RT-PCR and western blotting analysis confirmed that SNAP-25 mRNA and protein levels decreased significantly in the developing hypothyroid rat brain. Our data suggest that in the developing rat brain, SNAP-25 expression is regulated by thyroid hormone, and thyroid hormone deficiency can cause decreased expression of SNAP-25 and this may on some level account for the impaired brain development seen in hypothyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

GABA:

γ-Aminobutyric acid

NCAM:

Neural cell adhesion molecule

NGF:

Nerve growth factor

Pcp-2:

Purkinje cell protein-2

PCR:

Polymerase chain reaction

PTU:

Propylthiouracil

SNAP-25:

Synaptosomal-associated protein of 25 kDa

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

T3 :

Triiodothyronine

T4 :

Thyroxine

TR:

thyroid Hormone receptor

VAMP:

Vesicle-associated membrane protein

References

  1. Strait KA, Zou L, Oppenheimer JH (1992) Beta 1 isoform-specific regulation of a triiodothyronineinduced gene during cerebellar development. Mol Endocrinol 6:1874–1880

    Article  PubMed  CAS  Google Scholar 

  2. Giordano T, Pan JB, Casuto D, Watanabe S, Arneric SP (1992) Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain. Brain Res Mol Brain Res 16:239–245

    Article  PubMed  CAS  Google Scholar 

  3. Koibuchi N, Fukuda H, Chin WW (1999) Promoter-specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum. Endocrinology 140:3955–3961

    Article  PubMed  CAS  Google Scholar 

  4. Neveu I, Arenas E (1996) Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J Cell Biol 133:631–646

    Article  PubMed  CAS  Google Scholar 

  5. Alvarez-Dolado M, Gonzalez-Sancho JM, Bernal J, Munoz A (1998) Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84:309–322

    Article  PubMed  CAS  Google Scholar 

  6. Alvarez-Dolado M, Ruiz M, Del Rio JA, Alcantara S, Burgaya F (1999) Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci 19:6979–6993

    PubMed  CAS  Google Scholar 

  7. Iglesias T, Caubin J, Stunnenberg HG, Zaballos A, Bernal J, Munoz A (1996) Thyroid hormonedependent transcriptional repression of neural cell adhesion molecule during brain maturation. EMBO J 15:4307–4316

    PubMed  CAS  Google Scholar 

  8. Thompson CC (1996) Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J Neurosci 16:7832–7840

    PubMed  CAS  Google Scholar 

  9. Poguet AL, Legrand C, Feng X, Yen PM, Meltzer P, Samarut J, Flamant F (2003) Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol 254:188–199

    Article  PubMed  CAS  Google Scholar 

  10. Bernal J, Guadanõ-Ferraz A (1998) Thyroid hormone and the development of the brain. Curr Opin Endocrinol Diabetes 5:296–304

    Article  CAS  Google Scholar 

  11. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–128

    Article  PubMed  CAS  Google Scholar 

  12. Koibuchi N, Jingu H, Iwasaki T (2003) Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2:279–289

    Article  PubMed  CAS  Google Scholar 

  13. Ghorbel MT (1999) Thyroid hormone effects on Krox-24 transcription in the post-natal mouse brain are developmentally regulated but are not correlated with mitosis. Oncogene 18:917–924

    Article  PubMed  CAS  Google Scholar 

  14. Koibuchi N, Chin WW (1998) RORa gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 139:2335–2341

    Article  PubMed  CAS  Google Scholar 

  15. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  16. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    Article  PubMed  CAS  Google Scholar 

  17. Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  PubMed  CAS  Google Scholar 

  18. Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  19. Ferro-Novick S, Jahn R (1994) Vesicle fusion from yeast to man. Nature 370:191–193

    Article  PubMed  CAS  Google Scholar 

  20. Vogel K, Roche PA (1999) SNAP-23 and SNAP-25 are palmitoylated in vivo. Biochem Biophys Res Commun 258:407–410

    Article  PubMed  CAS  Google Scholar 

  21. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A° resolution. Nature 395:347–353

    Article  PubMed  CAS  Google Scholar 

  22. Jahn R, Südhof TC (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68:863–911

    Article  PubMed  CAS  Google Scholar 

  23. Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2:98–106

    Article  PubMed  CAS  Google Scholar 

  24. Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ, Parlati F, Mahal LK, Sollner TH, Rothman JE (2002) Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J Cell Biol 158:929–940

    Article  PubMed  CAS  Google Scholar 

  25. Nagy G, Milosevic I, Fasshauer D, Muller EM, de Groot BL, Lang T, Wilson MC, Sørensen JB (2005) Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. Mol Biol Cell 16:5675–5685

    Article  PubMed  CAS  Google Scholar 

  26. Tafoya LC, Mameli M, Miyashita T, Guzowski JF, Valenzuela CF, Wilson MC (2006) Expression and function of SNAP-25 as a universal SNARE component in GABAergic neurons. J Neurosci 26:7826–7838

    Article  PubMed  CAS  Google Scholar 

  27. Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G, Molnar Z, Becher MW, Valenzuela CF, Partridge LD, Wilson MC (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5:19–26

    PubMed  CAS  Google Scholar 

  28. Sørensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E (2003) Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75–86

    Article  PubMed  Google Scholar 

  29. Grosse G, Grosse J, Tapp R, Kuchinke J, Gorsleben M, Fetter I, Höhne-Zell B, Gratzl M, Bergmann M (1999) SNAP-25 Requirement for dendritic growth of hippocampal neurons. J Neurosci Res 56:539–546

    Article  PubMed  CAS  Google Scholar 

  30. Osen-Sand A, Catsicas M, Staple JK, Jones KA, Ayala G, Knowles J, Grenningloh G, Catsicas S (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–448

    Article  PubMed  CAS  Google Scholar 

  31. Schiavo G, Santucci A, Dasgupta BR (1993) Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett 335:99–103

    Article  PubMed  CAS  Google Scholar 

  32. West Greenlee MH, Swanson JJ, Simon JJ, Elmquist JK, Jacobson CD, Sakaguchi DS (1996) Postnatal development and the differential expression of presynaptic terminal-associated proteins in the developing retina of the Brazilian opossum, Monodelphis domestica. Dev Brain Res 96:159–172

    Article  CAS  Google Scholar 

  33. Bark IC, Hahn KM, Ryabinin AE, Wilson MC (1995) Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proc Natl Acad Sci USA 92:1510–1514

    Article  PubMed  CAS  Google Scholar 

  34. Boschert U, O’Shaughnessy C, Dickinson R (1996) Developmental and plasticity-related differential expression of two SNAP-25 isoforms in the rat brain. J Comp Neurol 367:177–193

    Article  PubMed  CAS  Google Scholar 

  35. Catsicas S, Larhammar D, Blomqvist A (1991) Expression of a conserved cell-type-specific protein in nerve terminals coincides with synaptogenesis. Proc Natl Acad Sci USA 88:785–789

    Article  PubMed  CAS  Google Scholar 

  36. Shirasu M, Kimura K, Kataoka M (2000) VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells. Neurosci Res 37:265–275

    Article  PubMed  CAS  Google Scholar 

  37. Verderio C, Pozzi D, Pravettoni E, Inverardi F, Schenk U, Coco S, Proux-Gillardeaux V, Galli T, Rossetto O, Frassoni C, Matteoli M (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41:599–610

    Article  PubMed  CAS  Google Scholar 

  38. Hou Q, Gao X, Zhang X, Kong L, Wang X, Bian W, Tu Y, Jin M, Zhao G, Li B, Jing N, Yu L (2004) SNAP-25 in hippocampal CA1 region is involved in memory consolidation. Eur J Neurosci 20:1593–1603

    Article  PubMed  Google Scholar 

  39. Hou QL, Gao X, Lu Q, Zhang XH, Tu YY, Jin ML, Zhao GP, Yu L, Jing NH, Li BM (2006) SNAP-25 in hippocampal CA3 region is required for long-term memory formation. Biochem Biophys Res Commun 347:955–962

    PubMed  CAS  Google Scholar 

  40. Posthuma D, Luciano M, Geus EJ, Wright MJ, Slagboom PE, Montgomery GW, Boomsma DI, Martin NG (2005) A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet 77:318–326

    Article  PubMed  CAS  Google Scholar 

  41. Gosso MF, de Geus EJ, van Belzen MJ, Polderman TJ, Heutink P, Boomsma DI, Posthuma D (2006) The SNAP-25 gene is associated with cognitive ability: evidence from a family-based study in two independent Dutch cohorts. Mol Psychiatry 11:878–886

    Article  PubMed  CAS  Google Scholar 

  42. Cai D-S, Su Q, Chen Y, Luo M (2000) Effect of thyroid hormone deficiency on developmental expression of Goa gene in the brain of neonatal rats by competitive RT-PCR and in situ hybridization histochemistry. Brain Res 864:195–204

    Article  PubMed  CAS  Google Scholar 

  43. Langley K, Hepp R, Grant NJ, Aunis D, Rodriguez-Pena A (2002) Thyroid hormones regulate adrenal chromaffin cell SNAP-25. Ann N Y Acad Sci 971:277–280

    Article  PubMed  CAS  Google Scholar 

  44. Quintanar JL, Salinas E (2002) Effect of hypothyroidism on synaptosomal-associated protein of 25 kDa and syntaxin-1 expression in adenohypophyses of rat. J Endocrinol Invest 25:754–758

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (30200127 and 30470819). We gratefully acknowledge Katie Robertson for helpful assistance and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HM., Su, Q. & Luo, M. Thyroid hormone regulates the expression of SNAP-25 during rat brain development. Mol Cell Biochem 307, 169–175 (2008). https://doi.org/10.1007/s11010-007-9596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9596-1

Keywords

Navigation