Skip to main content
Log in

The function study on the interaction between Grb2 and AMPK

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Growth factor receptor-bound protein 2 (Grb2) is an extensively studied adaptor protein involved in cell signaling. Grb2 is a highly flexible protein composed of a single SH2 domain flanked by two SH3 domains. The evolutionarily conserved serine/threonine kinase, AMP-activated protein kinase (AMPK), functions as a cellular fuel gauge that regulates metabolic pathways in glucose and fatty acid metabolism and protein synthesis. AMPK regulates the activation of TSC2 by phosphorylating TSC2. Here we report for the first time on the interaction of Grb2 with AMPK. SH2 domain of Grb2 and KIS domain of AMPK are both required for the combination of Grb2 and AMPK. Furthermore, Grb2 function as a factor which mediates phosphorylation of AMPK at Thr172, and potentially involves in metabolism pathways and AMPK-TSC2-mTOR cell growth pathway through regulating the activation of AMPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Songyang Z, Shoelson SE, McGlade J et al (1994) Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol 14:2777–2785

    PubMed  CAS  Google Scholar 

  2. Garbay C, Liu WQ, Vidal M et al (1994) Inhibitors of Ras signal transduction as antitumor agents. Biochem Pharmacol 60:1165–1169

    Article  Google Scholar 

  3. Koretzky GA (1997) The Role of Grb2-associated proteins in T-cell activation. Immunol Today 18:401–406

    Article  PubMed  CAS  Google Scholar 

  4. Turner H, Reif K, Rivera J et al (1995) Regulation of the adapter molecule Grb2 by the Fc-Epsilon-R1 in the Mast-Cell Line Rbl2H3. J Biol Chem 270:9500–9506

    Article  PubMed  CAS  Google Scholar 

  5. Vihinen M, Smith CIE (1996) Structural aspects of signal-transduction in B-Cells. Crit Rev Immunol 16:251–275

    PubMed  CAS  Google Scholar 

  6. Schlaepfer DD, Hanks SK, Hunter T et al (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372:786–791

    PubMed  CAS  Google Scholar 

  7. Buday L (1999) Membrane-targeting of signalling molecules by SH2/SH3 domain containing adaptor proteins. Biochim Biophys Acta 1422:187–204

    PubMed  CAS  Google Scholar 

  8. Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4:110–116

    Article  PubMed  CAS  Google Scholar 

  9. Yuzawa S, Yokochi M, Hatanaka H et al (2001) Solution structure of Grb2 reveals extensive flexibility necessary for target recognition. J Mol Biol 306:527–537

    Article  PubMed  CAS  Google Scholar 

  10. Xue B, Kahn BB (2006) AMP-activated protein kinase integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574:73–83

    Article  PubMed  CAS  Google Scholar 

  11. Hudson ER, Pan DA, James J et al (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13:861–866

    Article  PubMed  CAS  Google Scholar 

  12. Wong KA, Lodish HF (2006) A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits. J Biol Chem 281:36434–36442

    Article  PubMed  CAS  Google Scholar 

  13. Dowell P, Hu Z, Lane MD (2005) Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. Annu Rev Biochem 74:515–534

    Article  PubMed  CAS  Google Scholar 

  14. Kahn BB, Alquier T, Carling D et al (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  PubMed  CAS  Google Scholar 

  15. Kim EK, Miller I, Aja S et al (2004) C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J Biol Chem 279:19970–19976

    Article  PubMed  CAS  Google Scholar 

  16. Kim MS, Park JY, Namkoong C et al (2004) Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10:727–733

    Article  PubMed  CAS  Google Scholar 

  17. Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008

    Article  PubMed  CAS  Google Scholar 

  18. Minokoshi Y, Kim YB, Peroni OD et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  PubMed  CAS  Google Scholar 

  19. Han SM, Namkoong C, Jang PG et al (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48:2170–2178

    Article  PubMed  CAS  Google Scholar 

  20. Kola B, Hubina E, Tucci SA et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201

    Article  PubMed  CAS  Google Scholar 

  21. Hawley SA, Davison M, Woods A et al (1996) Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887

    Article  PubMed  CAS  Google Scholar 

  22. Hong SP, Leiper FC, Woods A et al (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Aci USA 100:8839–8843

    Article  CAS  Google Scholar 

  23. Sutherland CM, Hawley SA, McCartney RR et al (2003) Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 13:1299–1305

    Article  PubMed  CAS  Google Scholar 

  24. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. cell 115:577–590

    Article  PubMed  CAS  Google Scholar 

  25. Gao X, Zhang Y, Arrazola P et al (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 4:699–704

    Article  PubMed  CAS  Google Scholar 

  26. Scott MT, Ingram A, Ball KL (2002) PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein. EMBO J 21:6771–6780

    Article  PubMed  CAS  Google Scholar 

  27. Jiang X, Huang F, Marusyk A et al (2003) Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 14:858–870

    Article  PubMed  CAS  Google Scholar 

  28. Tari AM, Lopez-Berestein G (2001) GRB2: a pivotal protein in signal transduction. Semin Oncol 28:142–147

    Article  PubMed  CAS  Google Scholar 

  29. Hardie DG (2004) The AMP-activated protein kinase pathway players upstream and downstream. J Cell Science 117:5479–5487

    Article  PubMed  CAS  Google Scholar 

  30. Ouchi N, Kobayashi H, Kihara S (2004). Adiponectin stimulates angiogenesis by promoting cross-talk between AMPactivated protein kinase and Akt signaling in endothelial cells. J Biol Chem 279:1304–1309

    Article  PubMed  CAS  Google Scholar 

  31. Feng Z, Hu W, de Stanchina E et al (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67:3043–3053

    Article  PubMed  CAS  Google Scholar 

  32. Hahn-Windgassen A, Nogueira V, Chen CC et al (2005) Akt activates mTOR by regulating cellular ATP level and AMPK activity. J Biol Chem 280:32081–32089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yi Tie for providing the Akt1 plasmid. This work was partially supported by Chinese National Natural Science Foundation Projects (30600123, 30621063) and Chinese National Basic Research Program (2006CB910802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingqiang Zhang or Fuchu He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Wang, J., Yin, X. et al. The function study on the interaction between Grb2 and AMPK. Mol Cell Biochem 307, 121–127 (2008). https://doi.org/10.1007/s11010-007-9591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9591-6

Keywords

Navigation