Skip to main content

Advertisement

Log in

ATRA promotes alpha tocopherol succinate-induced apoptosis in freshly isolated leukemic cells from chronic myeloid leukemic patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We investigated the in vitro efficacy of all-trans retinoic acid (ATRA) and alpha-tocopherol succinate (α-TS) alone and in combination on the induction of cell death in freshly isolated leukemic cells obtained from chronic myeloid leukemia (CML) patients. In vitro cytotoxicity and induction of lipid peroxidation by ATRA (10 μM) and α-TS (25 or 50 μM) were evaluated in primary leukemic cells by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and malondialdehyde formation respectively. Treatment of leukemic cells with α-TS alone or in combination with ATRA significantly (P < 0.05) decreased the cell viability in a concentration and time dependent manner as compared to peripheral blood mononuclear cells obtained from normal healthy controls. Lipid peroxidation was enhanced by 98% (P < 0.05) on combined treatment of cells with ATRA (10 μM) and α-TS (50 μM). ATRA alone did not enhance the externalization of phosphatidyl serine as studied by annexin-V binding using fluorescence activated cell sorter analysis, whereas in combination with α-TS it increased to 400% at 12 h. The treatment of leukemic cells to combination of ATRA with α-TS significantly decreased (P < 0.05) mitochondrial membrane potential and enhanced lysosomal destabilization. The combination of these drugs also increased mitochondrial and cytosolic reactive oxygen species (ROS) production, nitric oxide levels, and caspase-3 activity significantly and caused DNA fragmentation at 24 h in a concentration dependent manner in the leukemic cells. Our data suggest that ATRA in combination with α-TS efficiently induces apoptosis in leukemic cells, which may be a useful therapeutic modality in CML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Martin SJ, Green DR (1995) Apoptosis and cancer: the failure of controls on cell death and cell survival. Crit Rev Oncol Hematol 18:137–153

    Article  PubMed  CAS  Google Scholar 

  2. Fisher DE (1994) Apoptosis in cancer therapy: crossing the threshold. Cell 78:539–542

    Article  PubMed  CAS  Google Scholar 

  3. Mencher SK, Wang LG (2005) Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol 5:3

    Article  PubMed  CAS  Google Scholar 

  4. Nilsson B, Olofsson T, Olsson I (1984) Myeloid differentiation in liquid cultures of cells from patients with chronic myeloid leukemia: effects of retinoic acid and indomethacin. Exp Hematol 12:91–99

    PubMed  CAS  Google Scholar 

  5. Russo D, Regazzi M, Sacchi S, Visani G, Lazzarino M, Avvisati G, Pelicci PG, Dastoli G, Grandi C, Iancona I, Candoni A, Grattoni R, Galieni P, Rupoli S, Liberati AM, Maiolo AT (1998) All-trans retinoic acid (ATRA) in patients with chronic myeloid leukemia in the chronic phase. Leukemia 12:449–454

    Article  PubMed  CAS  Google Scholar 

  6. Marley SB, Davidson RJ, Goldman JM, Gordon MY (2002) Effects of combinations of therapeutic agents on the proliferation of progenitor cells in chronic myeloid leukemia. Br J Haematol 116:162–165

    Article  PubMed  CAS  Google Scholar 

  7. Dutcher JP, Lee S, Gallagher RE, Makary AZ, Hines JD, Londer H, Farnen JP, Bennett JM, Paietta E, Rowe JM, Goloubeva O, Wiernik PH (2005) Phase II study of all-trans retinoic acid in the accelerated phase or early blastic phase of chronic myeloid leukemia: a study of the Eastern Cooperative Oncology Group (E1993). Leuk Lymphoma 46:377–385

    Article  PubMed  CAS  Google Scholar 

  8. Burton GW, Traber MG (1990) Vitamin E: antioxidant activity, biokinetics, and bioavailability. Annu Rev Nutr 10:357–382

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Y, Zhao X, Yang B, Neuzil J, Wu K (2007) Alpha-Tocopheryl succinate-induced apoptosis in human gastric cancer cells is modulated by ERK1/2 and c-Jun N-terminal kinase in a biphasic manner. Cancer Lett 247:345–352

    Article  PubMed  CAS  Google Scholar 

  10. Malafa MP, Fokum FD, Andoh J, Neitzel LT, Bandyopadhyay S, Zhan R, Iiizumi M, Furuta E, Horvath E, Watabe K (2006) Vitamin E succinate suppresses prostate tumor growth by inducing apoptosis. Int J Cancer 118:2441–2447

    Article  PubMed  CAS  Google Scholar 

  11. Wang XF, Dong L, Zhao Y, Tomasetti M, Wu K, Neuzil J (2006) Vitamin E analogues as anticancer agents: lessons from studies with alpha-tocopheryl succinate. Mol Nutr Food Res 50:675–685

    Article  PubMed  CAS  Google Scholar 

  12. Swettenham E, Witting PK, Salvatore BA, Neuzil J (2005) Alpha-tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: potential therapy of malignancies of the nervous system? J Neurochem 94:1448–1456

    Article  PubMed  CAS  Google Scholar 

  13. Kline K, Yu W, Sanders BG (2001) Vitamin E: mechanisms of action as tumor cell growth inhibitors. J Nutr 131:161S–163S

    PubMed  CAS  Google Scholar 

  14. Barnett KT, Fokum FD, Malafa MP (2002) Vitamin E succinate inhibits colon cancer liver metastases. J Surg Res 106:292–298

    Article  PubMed  CAS  Google Scholar 

  15. Malafa MP, Neitzel LT (2000) Vitamin E succinate promotes breast cancer tumor dormancy. J Surg Res 93:163–170

    Article  PubMed  CAS  Google Scholar 

  16. Heeg K, Reimann J, Kabelitz D, Hardt C, Wagner H (1985) A rapid colorimetric assay for the determination of IL-2-producing helper T cell frequencies. J Immunol Methods 77:237–246

    Article  PubMed  CAS  Google Scholar 

  17. Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Negre-Salvayre A, Sticha M, Coffey RJ, Weber C (2001) Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415

    Article  PubMed  CAS  Google Scholar 

  18. Zang Y, Beard RL, Chandraratna RA, Kang JX (2001) Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ 8:477–485

    Article  PubMed  CAS  Google Scholar 

  19. Shi GY, Gao F, Shi XG, Tang XM (2001) Detection of cellular reactive oxygen species by flow cytometry. Shanghai Di-er Yike Daxue Xuebao 21:122–124

    CAS  Google Scholar 

  20. Green LC, Wanger DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and (15N) nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  21. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  PubMed  CAS  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, Lin H, Chen C, Chen BD (1999) Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 cleavage in human M-07e leukaemic cells. Biochem J 340:127–133

    Article  PubMed  CAS  Google Scholar 

  24. Gorczyca W, Bigman K, Mittelman A, Ahmed T, Gong J, Melamed MR, Darzynkiewicz Z (1993) Induction of DNA strand breaks associated with apoptosis during treatment of leukemias. Leukemia 7:659–670

    PubMed  CAS  Google Scholar 

  25. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidyl serine is a general feature of apoptosis regardless of initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  PubMed  CAS  Google Scholar 

  26. Verhoven B, Schlegal RA, Williamson P (1992) Rapid loss and restoration of lipid asymmetry by different pathways in resealed erythrocyte ghosts. Biochem Biophys Acta 1104:15–23

    Article  PubMed  CAS  Google Scholar 

  27. Foghsgaard L, Lademann U, Wissing D, Poulsen B, Jaattela M (2002) Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells. J Biol Chem 277:39499–39506

    Article  PubMed  CAS  Google Scholar 

  28. Jain SK, Mohandas N, Clark MR, Shohet SB (1983) The effect of malonyldialdehyde, a product of lipid peroxidation, on the deformability, dehydration and 51Cr-survival of erythrocytes. Br J Haematol 53:247–255

    PubMed  CAS  Google Scholar 

  29. Jain SK (1984) The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes. J Biol Chem 259:3391–3394

    PubMed  CAS  Google Scholar 

  30. Jain SK (1985) In vivo externalization of phosphatidylserine and phosphatidylethanolamine in the membrane bilayer and hypercoagulability by the lipid peroxidation of erythrocytes in rats. J Clin Invest 76:281–286

    Article  PubMed  CAS  Google Scholar 

  31. Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  32. Schmidt-Mende J, Gogvadze V, Hellstrom-Lindberg E, Zhivotovsky B (2006) Early mitochondrial alterations in ATRA-induced cell Death. Cell Death Differ 13:119–128

    Article  PubMed  CAS  Google Scholar 

  33. Newcomer ME (1995) Retinoid-binding proteins: structural determinants important for function. FASEB J 9:229–239

    PubMed  CAS  Google Scholar 

  34. Armstrong JL, Ruiz M, Boddy AV, Redfern CP, Pearson AD, Veal GJ (2005) Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells. Br J Cancer 92:696 –604

    Article  PubMed  CAS  Google Scholar 

  35. Dussmann H, Kogel D, Rehm M, Prehn JH (2003) Mitochondrial membrane permeabilization and superoxide production during apoptosis. A single-cell analysis. J Biol Chem 278:12645–12649

    Article  PubMed  CAS  Google Scholar 

  36. Weber T, Dalen H, Andera L, Negre-Salvayre A, Auge N, Sticha M, Lloret A, Terman A, Witting PK, Higuchi M, Plasilova M, Zivny J, Gellert N, Weber C, Neuzil J (2003) Mitochondria play a central role in apoptosis induced by a-tocopheryl succinate, an agent with anticancer activity: comparison with receptor mediated pro-apoptotic signaling. Biochemistry 42:4277–4291

    Article  PubMed  CAS  Google Scholar 

  37. Alleva R, Tomasetti M, Andera L, Gellert N, Borghi B, Weber C, Murphy MP, Neuzil J (2001) Coenzyme Q blocks biochemical but not receptor mediated apoptosis by increasing mitochondrial antioxidant protection. FEBS Lett 503:46–50

    Article  PubMed  CAS  Google Scholar 

  38. Kogure K, Morita M, Nakashima S, Hama S, Tokumura A, Fukuzawa K (2001) Superoxide is responsible for apoptosis in rat vascular smooth muscle cells induced by a-tocopheryl hemisuccinate. Biochim Biophys Acta 1528:25–30

    PubMed  CAS  Google Scholar 

  39. Neuzil J, Zhao M, Ostermann G, Sticha M, Gellert N, Weber C, Eaton JW, Brunk UT (2002) Alpha-tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochem J 362:709–715

    Article  PubMed  CAS  Google Scholar 

  40. Khanduja KL, Avti PK, Kumar S, Pathania V, Pathak CM (2005) Inhibitory effect of vitamin E on proinflammatory cytokines-and endotoxin-induced nitric oxide release in alveolar macrophages. Life Sci 76:2669–2680

    Article  PubMed  CAS  Google Scholar 

  41. Kolb JP (2000) Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia 14:1685–1694

    Article  PubMed  CAS  Google Scholar 

  42. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Google Scholar 

  43. Baran CP, Zeigler MM, Tridandapani S, Marsh CB (2004) The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des 10:855–866

    Article  PubMed  CAS  Google Scholar 

  44. Boveris A, Alvarez S, Navarro A (2002) The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic Biol Med 33:1186–1193

    Google Scholar 

  45. Nishikawa M, Sato EI, Utsumik K, Inoue M (1996) Oxygen dependent regulation of energy metabolism in ascites tumor cells by nitric oxide. Can Res 56:4535–4540

    CAS  Google Scholar 

  46. Giulivi C (2003) Characterization and function of mitochondrial nitric-oxide synthase. Free Radic Biol Med 34:397–408

    Article  PubMed  CAS  Google Scholar 

  47. Wu K, Zhao L, Li Y, Shan YJ, Wu LJ (2004) Effects of vitamin E succinate on the expression of Fas and PCNA proteins in human gastric carcinoma cells and its clinical significance. World J Gastroenterol 10:945–949

    PubMed  CAS  Google Scholar 

  48. Ushmorov A, Ratter F, Lehmann V, Droge W, Schirrmacher V, Umansky V (1999) Nitric oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome C release. Blood 93:2342–2352

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan Lal Khanduja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Khanduja, K.L., Verma, N. et al. ATRA promotes alpha tocopherol succinate-induced apoptosis in freshly isolated leukemic cells from chronic myeloid leukemic patients. Mol Cell Biochem 307, 109–119 (2008). https://doi.org/10.1007/s11010-007-9590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9590-7

Keywords

Navigation