Skip to main content

Advertisement

Log in

SMAD3 inhibits SF-1-dependent activation of the CYP17 promoter in H295R cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cytochrome P450c17, encoded by the CYP17 gene, is a component of 17α-hydroxylase/17,20 lyase which catalyses 17α-hydroxylation of pregnenolone or progesterone, required for glucocorticosteroid and androgen synthesis. It has been reported that transforming growth factor β (TGF-β) decreases both basal and cAMP-stimulated levels of CYP17 mRNA, but the mechanism of TGF-β action on CYP17 expression remains unknown. We investigated an inhibitory effect of TGF-β on CYP17 expression in H295R cells using constructs containing the CYP17 promoter region fused with the luciferase gene. In the H295R cells, TGF-β decreased endogenous SF-1 level and inhibited activity of the 300 bp fragment of CYP17 promoter, which was stimulated by coexpression of SF-1. Overexpression of SMAD3 caused an inhibition of SF-1-stimulated CYP17 promoter activity, whereas overexpression of SMAD7 was ineffective. In conclusion, our results suggest that the inhibitory action of TGF-β on CYP17 transcription involve at least two mechanisms: SMAD3 dependent inactivation of CYP17 promoter activity and repression of SF-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SF-1:

Steroidogenic factor 1 (NR5A1, Ad4BP)

TGF-β:

Transforming growth factor β

TβRII:

Type II TGF-β receptor

StAR:

Steroidogenic acute regulatory protein

SBE:

SMAD binding element

References

  1. Chung BC, Picado-Leonard J, Haniu M, Bienkowski M, Hall PF, Shively JE, Miller WL (1987) Cytochrome P450c17 (steroid 17 alpha-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc Natl Acad Sci U S A 84:407–411

    Article  PubMed  CAS  Google Scholar 

  2. Picado-Leonard J, Miller WL (1987) Cloning and sequence of the human gene for P450c17 (steroid 17 alpha-hydroxylase/17,20 lyase): similarity with the gene for P450c21. DNA 6:439–448

    Article  PubMed  CAS  Google Scholar 

  3. Miller WL (2005) Minireview: regulation of steroidogenesis by electron transfer. Endocrinology 146:2544–2550

    Article  PubMed  CAS  Google Scholar 

  4. Fan YS, Sasi R, Lee C, Winter JS, Waterman MR, Lin CC (1992) Localization of the human CYP17 gene (cytochrome P450(17 alpha)) to 10q24.3 by fluorescence in situ hybridization and simultaneous chromosome banding. Genomics 14:1110–1111

    Article  PubMed  CAS  Google Scholar 

  5. Di Blasio AM, Voutilainen R, Jaffe RB, Miller WL (1987) Hormonal regulation of messenger ribonucleic acids for P450scc (cholesterol side-chain cleavage enzyme) and P450c17 (17 alpha-hydroxylase/17,20-lyase) in cultured human fetal adrenal cells. J Clin Endocrinol Metab 65:170–175

    Article  PubMed  CAS  Google Scholar 

  6. Ogo A, Waterman MR, McAllister JM, Kagawa N (1997) The homeodomain protein Pbx1 is involved in cAMP-dependent transcription of human CYP17. Arch Biochem Biophys 348:226–231

    Article  PubMed  CAS  Google Scholar 

  7. Rodriguez H, Hum DW, Staels B, Miller WL (1997) Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells. J Clin Endocrinol Metab 82:365–371

    Article  PubMed  CAS  Google Scholar 

  8. Ozbay T, Rowan A, Leon A, Patel P, Sewer MB (2006) Cyclic adenosine 5′-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1. Endocrinology 147:1427–1437

    Article  PubMed  CAS  Google Scholar 

  9. Hanley NA, Rainey WE, Wilson DI, Ball SG, Parker KL (2001) Expression profiles of SF-1, DAX1, and CYP17 in the human fetal adrenal gland: potential interactions in gene regulation. Mol Endocrinol 15:57–68

    Article  PubMed  CAS  Google Scholar 

  10. Sewer MB, Nguyen VQ, Huang CJ, Tucker PW, Kagawa N, Waterman MR (2002) Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54(nrb)/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology 143:1280–1290

    Article  PubMed  CAS  Google Scholar 

  11. Val P, Lefrancois-Martinez AM, Veyssiere G, Martinez A (2003) SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1:8

    Article  PubMed  Google Scholar 

  12. Enyeart JJ, Boyd RT, Enyeart JA (1996) ACTH and AII differentially stimulate steroid hormone orphan receptor mRNAs in adrenal cortical cells. Mol Cell Endocrinol 124:97–110

    Article  PubMed  CAS  Google Scholar 

  13. Krylova IN, Sablin EP, Moore J, Xu RX, Waitt GM, MacKay JA, Juzumiene D, Bynum JM, Madauss K, Montana V, Lebedeva L, Suzawa M, Williams JD, Williams SP, Guy RK, Thornton JW, Fletterick RJ, Willson TM, Ingraham HA (2005) Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell 120:343–355

    Article  PubMed  CAS  Google Scholar 

  14. Desclozeaux M, Krylova IN, Horn F, Fletterick RJ, Ingraham HA (2002) Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol Cell Biol 22:7193–7203

    Article  PubMed  CAS  Google Scholar 

  15. Dammer EB, Leon A, Sewer MB (2007) Coregulator exchange and sphingosine-sensitive cooperativity of steroidogenic factor-1, general control nonderepressed 5, p54, and p160 coactivators regulate cyclic adenosine 3′,5′-monophosphate-dependent cytochrome P450c17 transcription rate. Mol Endocrinol 21:415–438

    Article  PubMed  CAS  Google Scholar 

  16. Lebrethon MC, Jaillard C, Naville D, Begeot M, Saez JM (1994) Effects of transforming growth factor-beta 1 on human adrenocortical fasciculata-reticularis cell differentiated functions. J Clin Endocrinol Metab 79:1033–1039

    Article  PubMed  CAS  Google Scholar 

  17. Rainey WE, Naville D, Saez JM, Carr BR, Byrd W, Magness RR, Mason JI (1990) Transforming growth factor-beta inhibits steroid 17 alpha-hydroxylase cytochrome P-450 expression in ovine adrenocortical cells. Endocrinology 127:1910–1915

    PubMed  CAS  Google Scholar 

  18. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  19. Le Roy C, Leduque P, Dubois PM, Saez JM, Langlois D (1996) Repression of transforming growth factor beta 1 protein by antisense oligonucleotide-induced increase of adrenal cell differentiated functions. J Biol Chem 271:11027–11033

    Article  PubMed  CAS  Google Scholar 

  20. Feige JJ, Vilgrain I, Brand C, Bailly S, Souchelnitskiy S (1998) Fine tuning of adrenocortical functions by locally produced growth factors. J Endocrinol 158:7–19

    Article  PubMed  CAS  Google Scholar 

  21. Perrin A, Pascal O, Defaye G, Feige JJ, Chambaz EM (1991) Transforming growth factor beta 1 is a negative regulator of steroid 17 alpha-hydroxylase expression in bovine adrenocortical cells. Endocrinology 128:357–362

    PubMed  CAS  Google Scholar 

  22. Liakos P, Lenz D, Bernhardt R, Feige JJ, Defaye G (2003) Transforming growth factor beta 1 inhibits aldosterone and cortisol production in the human adrenocortical cell line NCI-H295R through inhibition of CYP11B1 and CYP11B2 expression. J Endocrinol 176:69–82

    Article  PubMed  CAS  Google Scholar 

  23. Brand C, Souchelnytskiy S, Chambaz EM, Feige JJ, Bailly S (1998) Smad3 is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on StAR expression. Biochem Biophys Res Commun 253:780–785

    Article  PubMed  CAS  Google Scholar 

  24. Laurich VM, Trbovich AM, O’Neill FH, Houk CP, Sluss PM, Payne AH, Donahoe PK, Teixeira J (2002) Mullerian inhibiting substance blocks the protein kinase A-induced expression of cytochrome p450 17alpha-hydroxylase/C(17–20) lyase mRNA in a mouse Leydig cell line independent of cAMP responsive element binding protein phosphorylation. Endocrinology 143:3351–3360

    Article  PubMed  CAS  Google Scholar 

  25. Dooley CA, Attia GR, Rainey WE, Moore DR, Carr BR (2000) Bone morphogenetic protein inhibits ovarian androgen production. J Clin Endocrinol Metab 85:3331–3337

    Article  PubMed  CAS  Google Scholar 

  26. Biernacka-Lukanty JM, Lehmann TP, Trzeciak WH (2004) Inhibition of CYP17 expression by adrenal androgens and transforming growth factor beta in adrenocortical cells. Acta Biochim Pol 51:907–917

    PubMed  CAS  Google Scholar 

  27. Zatelli MC, Rossi R, del Senno L, degli Uberti EC (1998) Role of transforming growth factor beta 1 (TGF beta 1) in mediating androgen-induced growth inhibition in human adrenal cortex in vitro. Steroids 63:243–245

    Article  PubMed  CAS  Google Scholar 

  28. Vanttinen T, Liu J, Kuulasmaa T, Kivinen P, Voutilainen R (2003) Expression of activin/inhibin signaling components in the human adrenal gland and the effects of activins and inhibins on adrenocortical steroidogenesis and apoptosis. J Endocrinol 178:479–489

    Article  PubMed  CAS  Google Scholar 

  29. Lafont J, Laurent M, Thibout H, Lallemand F, Le Bouc Y, Atfi A, Martinerie C (2002) The expression of novH in adrenocortical cells is down-regulated by TGFbeta 1 through c-Jun in a Smad-independent manner. J Biol Chem 277:41220–41229

    Article  PubMed  CAS  Google Scholar 

  30. Lehmann TP, Biernacka-Lukanty JM, Trzeciak WH, Li JY (2005) Steroidogenic factor 1 gene transcription is inhibited by transforming growth factor beta. Endocr Res 31:71–79

    Article  PubMed  CAS  Google Scholar 

  31. Lin CJ, Martens JW, Miller WL (2001) NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17alpha-hydroxylase/17,20 lyase) in human adrenal NCI-H295A cells. Mol Endocrinol 15:1277–1293

    Article  PubMed  CAS  Google Scholar 

  32. Pierre A, Pisselet C, Dupont J, Mandon-Pepin B, Monniaux D, Monget P, Fabre S (2004) Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells. J Mol Endocrinol 33:805–817

    Article  PubMed  CAS  Google Scholar 

  33. Feng XH, Derynck R (2005) Specificity and versatility in TGF-beta signaling through SMADS. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a grant No P04A 03127 from The State Committee for Scientific Research (KBN). N.D-H. and T.P.L. are recipients of scholarships from the Postgraduate School of Molecular Medicine affiliated with the Medical University of Warsaw. We are grateful to graduate student Kamila Jasiak for the help in coimmunoprecipitation and Western blotting and to Mr. Jason Banks for expert editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz P. Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derebecka-Holysz, N., Lehmann, T.P., Holysz, M. et al. SMAD3 inhibits SF-1-dependent activation of the CYP17 promoter in H295R cells. Mol Cell Biochem 307, 65–71 (2008). https://doi.org/10.1007/s11010-007-9585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9585-4

Keywords

Navigation