Skip to main content
Log in

Analysis of age-associated changes in mitochondrial free radical generation by rat testis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Throughout spermatogenesis, mitochondria undergo a morphological and functional differentiation. Mitochondria are involved in the production of reactive oxygen species (ROS), considered one of the mediators of ageing. Particularly, lipid peroxidation is regarded as a major phenomenon by which ROS can impair cellular function. In the present study, we examined the production of superoxide anion, superoxide dismutase activity and the effect of Fe2+/ascorbate induced-lipid peroxidation on the respiratory chain activities of testis mitochondria throughout the process of spermatogenesis and ageing. Mitochondria from rat testes generated superoxide anion, mainly using NADH as substrate, which increased according to age. The activity of SOD is age-dependent and greatly stimulated during the first wave of spermatogenesis, but decreases in adulthood and old age. TBARS concentration was also markedly increased by ageing. The activity of mitochondrial respiratory chain complexes is differentially affected by oxidative stress induced by iron/ascorbate, succinate-dehydrogenase activity being less vulnerable than that of NADH-dehydrogenase and cytochrome c oxidase. The data suggest that ageing is accompanied by reduced activity of SOD, leading to excessive oxidative stress and enhanced lipid peroxidation that compromises the functionality of the electron transport chain. The data support the concept that mitochondrial function is an important determinant in ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vázquez-Memije ME, Cárdenas-Mendez MJ, El-Hafidi M (2005) Respiratory chain complexes and membrane fatty acids composition in rat testis mitochondria throughout development and ageing. Exp Gerontol 40:482–490

    Article  PubMed  CAS  Google Scholar 

  2. Wilson PD, Franks LM (1975) The effect of age on mitochondrial ultrastructure and enzymes. Adv Exp Med Biol 53:171–183

    PubMed  CAS  Google Scholar 

  3. St-Pierre J, Buckingham JA, Roebuck SJ et al (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  4. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  5. Vilenchik MM (ed) (1970) Molecular mechanisms of ageing. Nauka Publishers, Moscow

    Google Scholar 

  6. Miquel J, Economos AC, Fleming J et al (1980) Mitochondrial role in cell ageing. Exp Gerontol 15:575–591

    Article  PubMed  CAS  Google Scholar 

  7. Sohal RS, Allen RG (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25:499–522

    Article  PubMed  CAS  Google Scholar 

  8. Yu BP, Yang Y (1996) A critical evaluation of free radical theory of aging: a proposal for the oxidative stress hypothesis. Ann NY Acad Sci 786:1–11

    Article  PubMed  CAS  Google Scholar 

  9. Harman D (1981) The aging process. Proc Natl Acad Sci USA 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  10. Sohal RS (2002) Oxidative stress hypothesis of aging. Free Radic Biol Med 33:573–574

    Article  PubMed  CAS  Google Scholar 

  11. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  12. Harman D (1972) The biological clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  13. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  14. Junqueira VBC, Barros SBM, Chan SS et al (2004) Aging and oxidative stress. Mol Aspects Med 25:5–16

    Article  PubMed  CAS  Google Scholar 

  15. Laganiere S, Yu BP (1993) Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 39:7–18

    Article  PubMed  CAS  Google Scholar 

  16. Dufour E, Larsson N (2004) Understanding aging: revealing order out of chaos. Biochim Biophys Acta 1658:122–132

    Article  PubMed  CAS  Google Scholar 

  17. Vázquez-Memije ME, Izquierdo-Reyes V, Delhumeau-Ongay G (1988) The insensitivity to uncouplers of testis mitochondrial ATPase. Arch Biochem Biophys 260:67–74

    Article  PubMed  Google Scholar 

  18. Yang S, Zhu H, Li Y et al (2000) Mitochondria adaptation to obesity-related oxidant stress. Arch Biochem Biophys 378:259–268

    Article  PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  20. Suzuki K (2000) Measurement of Mn-SOD and Cu, Zn-SOD. In: Taniguchi N, Gutteridge J (eds) Experimental protocols for reactive oxygen and nitrogen species. Oxford University Press, UK

    Google Scholar 

  21. Burczynski JM, Hayes JR, Voigt JM et al (2001) Suppression of lipid peroxidation in adrenal microsomes following ACTH administration to guinea pig. Endocrinology 168:333–338

    Article  CAS  Google Scholar 

  22. Georgellis A, Tsirigotis M, Rydstrom J (1988) Generation of superoxide anion and lipid peroxidation in different cell types and subcellular fractions from rat testis. Toxicol Appl Pharmacol 94(3):362–373

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y, Fiskum G, Schuber D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80:780–787

    Article  PubMed  CAS  Google Scholar 

  24. Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368:545–553

    Article  PubMed  CAS  Google Scholar 

  25. McLennan HR, Degli Esposti M (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32:153–162

    Article  PubMed  CAS  Google Scholar 

  26. Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med 227:671–682

    CAS  Google Scholar 

  27. Kokoszka JE, Coskun P, Esposito LA et al (2001) Increased mitochondrial oxidative stress in the Sod2 (+/−) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci USA 98:2278–2283

    Article  PubMed  CAS  Google Scholar 

  28. Girotti AW (1998) Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39:1529–1542

    PubMed  CAS  Google Scholar 

  29. Sen T, Sen N, Tripathi G et al (2006) Lipid peroxidation associated cardiolipin loss and membrane depolarization in rat brain mitochondria. Neurochem Int 49:20–27

    Article  PubMed  CAS  Google Scholar 

  30. Vladimirov YA, Olenev VI, Suslova TB et al (1980) Lipid peroxidation in mitochondrial membrane. Adv Lipid Res 17:173–249

    PubMed  CAS  Google Scholar 

  31. Zanetti R, Catalá A (2000) Changes in n-6 and n-3 polyunsaturated fatty acids during lipid-peroxidation of mitochondria obtained from rat liver and several brain regions: effect of alpha-tocopherol. Prostaglandins Leukot Essent Fatty Acids 62:379–385

    Article  PubMed  CAS  Google Scholar 

  32. Gavazza M, Catalá A (2003) Melatonin preserves arachidonic and docosapentaenoic acids during ascorbate-Fe2+ peroxidation of rat testis microsomes and mitochondria. Int J Biochem Cell Biol 35:359–366

    Article  PubMed  CAS  Google Scholar 

  33. Ronco AM, Moraga PF Llanos MN (2002) Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production. J Endocrinol 172:95–104

    Article  PubMed  CAS  Google Scholar 

  34. Meroni SB, Riera MF, Pellizzari EH et al (2003) Possible role of arachidonic acid in the regulation of lactate production in rat Sertoli cells. Int J Androl 26:310–317

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Marcillat O, Giulivi C et al (1990) The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265:16330–16336

    PubMed  CAS  Google Scholar 

  36. Kwong LK, Sohal RS (2000) Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch Biochem Biophys 373:16–22

    Article  PubMed  CAS  Google Scholar 

  37. Yasuda Y, Ishii T, Suda H et al (2006) Age-related changes of mitochondrial structure and function in Caenorhabditis elegans. Mech Ageing Dev 127:763–770

    Article  PubMed  CAS  Google Scholar 

  38. Reinheckel T, Wiswedel I, Noack H et al (1995) Electrophoretic evidence for the impairment of complexes of the respiratory chain during iron/ascorbate induced peroxidation in isolated rat liver mitochondria. Biochim Biophys Acta 1239:45–50

    Article  PubMed  Google Scholar 

  39. DiMauro S (2004) Mitochondrial medicine. Biochim Biophys Acta 1659:107–114

    Article  PubMed  CAS  Google Scholar 

  40. De Magalhães JP (2005) Open-minded skepticism: inferring the causal mechanisms of human ageing from genetic perturbation. Ageing Res Rev 4:1–22

    Article  PubMed  Google Scholar 

  41. Balaban R, Nemoto S, Finkel T (2006) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  Google Scholar 

  42. Yin D, Chen K (2005) The essential mechanisms of aging: irreparable damage accumulation of biochemical side-reaction. Exp Gerontol 40:455–466

    Article  PubMed  CAS  Google Scholar 

  43. Godeas C, Sandri G, Panfili E (1994) Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria. Biochim Biophys Acta 1191:147–150

    Article  PubMed  CAS  Google Scholar 

  44. André J (1962) Contribution à la connaissance du chondriome. Etude de ses modification ultrastructurales pendent la spermatogénèse. J Ultrastruct Res 68:1–85

    Article  Google Scholar 

  45. Meinhardt A, Wilhelm B, Seitz J (1999) Expression of mitochondrial marker proteins during spermatogenesis. Hum Reprod Update 5:108–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grant FP-0038-445 from Fondo Fomento de la Investigación del IMSS. México. A. Tolosa received a scholarship from CONACyT, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha E. Vázquez-Memije.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Memije, M.E., Capin, R., Tolosa, A. et al. Analysis of age-associated changes in mitochondrial free radical generation by rat testis. Mol Cell Biochem 307, 23–30 (2008). https://doi.org/10.1007/s11010-007-9580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9580-9

Keywords

Navigation